Deep Learning基础--word2vec 中的数学原理详解
word2vec 是 Google 于 2013 年开源推出的一个用于获取 word vector 的工具包,它简单、高效,因此引起了很多人的关注。由于 word2vec 的作者 Tomas Mikolov 在两篇相关的论文 [3,4] 中并没有谈及太多算法细节,因而在一定程度上增加了这个工具包的神秘感。一些按捺不住的人于是选择了通过解剖源代码的方式来一窥究竟,出于好奇,我也成为了他们中的一员。读完代码后,觉得收获颇多,整理成文,给有需要的朋友参考。
目录
(一)目录和前言
(二)预备知识
(三)背景知识
(四)基于 Hierarchical Softmax 的模型
(五)基于 Negative Sampling 的模型
(六)若干源码细节
作者: peghoty
出处: http://blog.csdn.net/itplus/article/details/37999613
欢迎转载/分享, 但请务必声明文章出处.