算法题之Median of Two Sorted Arrays

 

这道题是LeetCode上的题目,难度级别为5,刚开始做没有找到好的思路,以为是自己智商比较低,后来发现确实也比较低。。。

题目:

There are two sorted arrays nums1 and nums2 of size m and n respectively.

Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).

Example 1:

nums1 = [1, 3]
nums2 = [2]

The median is 2.0

Example 2:

nums1 = [1, 2]
nums2 = [3, 4]

The median is (2 + 3)/2 = 2.5

 

思路是:

对于一个长度为n的已排序数列a,若n为奇数,中位数为a[n / 2 + 1] , 
若n为偶数,则中位数(a[n / 2] + a[n / 2 + 1]) / 2
如果我们可以在两个数列中求出第K小的元素,便可以解决该问题
不妨设数列A元素个数为n,数列B元素个数为m,各自升序排序,求第k小元素
取A[k / 2] B[k / 2] 比较,
如果 A[k / 2] > B[k / 2] 那么,所求的元素必然不在B的前k / 2个元素中(证明反证法)
反之,必然不在A的前k / 2个元素中,于是我们可以将A或B数列的前k / 2元素删去,求剩下两个数列的
k - k / 2小元素,于是得到了数据规模变小的同类问题,递归解决
如果 k / 2 大于某数列个数,所求元素必然不在另一数列的前k / 2个元素中,同上操作。

 

时间复杂度为log(m + n)的答案:

class Solution {
public:
    int getkth(int s[], int m, int l[], int n, int k){
        // let m <= n
        if (m > n) 
            return getkth(l, n, s, m, k);
        if (m == 0)
            return l[k - 1];
        if (k == 1)
            return min(s[0], l[0]);

        int i = min(m, k / 2), j = min(n, k / 2);
        if (s[i - 1] > l[j - 1])
            return getkth(s, m, l + j, n - j, k - j);
        else
            return getkth(s + i, m - i, l, n, k - i);
        return 0;
    }
    
    double findMedianSortedArrays(int A[], int m, int B[], int n) {
        int l = (m + n + 1) >> 1;
        int r = (m + n + 2) >> 1;
        return (getkth(A, m ,B, n, l) + getkth(A, m, B, n, r)) / 2.0;
    }
};

  

 

posted @ 2017-08-26 15:21  蓝鲸王子  阅读(330)  评论(0编辑  收藏  举报