Tensorflow Serving 参数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
Flags:
    --port=8500                         int32   Port to listen on for gRPC API
    --grpc_socket_path=""               string  If non-empty, listen to a UNIX socket for gRPC API on the given path. Can be either relative or absolute path.
    --rest_api_port=0                   int32   Port to listen on for HTTP/REST API. If set to zero HTTP/REST API will not be exported. This port must be different than the one specified in --port.
    --rest_api_num_threads=16           int32   Number of threads for HTTP/REST API processing. If not set, will be auto set based on number of CPUs.
    --rest_api_timeout_in_ms=30000      int32   Timeout for HTTP/REST API calls.
    --enable_batching=false             bool    enable batching
    --batching_parameters_file=""       string  If non-empty, read an ascii BatchingParameters protobuf from the supplied file name and use the contained values instead of the defaults.
    --model_config_file=""              string  If non-empty, read an ascii ModelServerConfig protobuf from the supplied file name, and serve the models in that file. This config file can be used to specify multiple models to serve and other advanced parameters including non-default version policy. (If used, --model_name, --model_base_path are ignored.)
    --model_name="default"              string  name of model (ignored if --model_config_file flag is set)
    --model_base_path=""                string  path to export (ignored if --model_config_file flag is set, otherwise required)
    --max_num_load_retries=5            int32   maximum number of times it retries loading a model after the first failure, before giving up. If set to 0, a load is attempted only once. Default: 5
    --load_retry_interval_micros=60000000   int64   The interval, in microseconds, between each servable load retry. If set negative, it doesn't wait. Default: 1 minute
    --file_system_poll_wait_seconds=1   int32   Interval in seconds between each poll of the filesystem for new model version. If set to zero poll will be exactly done once and not periodically. Setting this to negative value will disable polling entirely causing ModelServer to indefinitely wait for a new model at startup. Negative values are reserved for testing purposes only.
    --flush_filesystem_caches=true      bool    If true (the default), filesystem caches will be flushed after the initial load of all servables, and after each subsequent individual servable reload (if the number of load threads is 1). This reduces memory consumption of the model server, at the potential cost of cache misses if model files are accessed after servables are loaded.
    --tensorflow_session_parallelism=0  int64   Number of threads to use for running a Tensorflow session. Auto-configured by default.Note that this option is ignored if --platform_config_file is non-empty.
    --tensorflow_intra_op_parallelism=0 int64   Number of threads to use to parallelize the executionof an individual op. Auto-configured by default.Note that this option is ignored if --platform_config_file is non-empty.
    --tensorflow_inter_op_parallelism=0 int64   Controls the number of operators that can be executed simultaneously. Auto-configured by default.Note that this option is ignored if --platform_config_file is non-empty.
    --ssl_config_file=""                string  If non-empty, read an ascii SSLConfig protobuf from the supplied file name and set up a secure gRPC channel
    --platform_config_file=""           string  If non-empty, read an ascii PlatformConfigMap protobuf from the supplied file name, and use that platform config instead of the Tensorflow platform. (If used, --enable_batching is ignored.)
    --per_process_gpu_memory_fraction=0.000000  float   Fraction that each process occupies of the GPU memory space the value is between 0.0 and 1.0 (with 0.0 as the default) If 1.0, the server will allocate all the memory when the server starts, If 0.0, Tensorflow will automatically select a value.
    --saved_model_tags="serve"          string  Comma-separated set of tags corresponding to the meta graph def to load from SavedModel.
    --grpc_channel_arguments=""         string  A comma separated list of arguments to be passed to the grpc server. (e.g. grpc.max_connection_age_ms=2000)
    --enable_model_warmup=true          bool    Enables model warmup, which triggers lazy initializations (such as TF optimizations) at load time, to reduce first request latency.
    --version=false                     bool    Display version
    --monitoring_config_file=""         string  If non-empty, read an ascii MonitoringConfig protobuf from the supplied file name

  

posted @   sixinshuier  阅读(1969)  评论(0编辑  收藏  举报
编辑推荐:
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
阅读排行:
· winform 绘制太阳,地球,月球 运作规律
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· AI 智能体引爆开源社区「GitHub 热点速览」
· Manus的开源复刻OpenManus初探
· 写一个简单的SQL生成工具
点击右上角即可分享
微信分享提示