论文阅读:Segment Anything之阅读笔记

1|0引言

  • 论文:Segment Anything是Meta出的图像语义分割的算法。这个算法因其强大的zero-shot泛化能力让人惊艳,这不抽空拿来学习了一下。
  • 该算法的代码写得很清楚、简洁和规范,读来让人赏心悦目。推荐去看源码,很有意思。
  • 本篇文章,将以问答形式来解读阅读过程中遇到的困惑,想来这种方式效率更高一些。
  • PDF | Code

2|0整体结构介绍

在这里插入图片描述

  • 整体分为三大部分:image encoder、prompt encoder和mask decoder。下图看的更加清楚一些,也是来自论文。
    在这里插入图片描述

3|0论文问答

3|1代码仓库中,模型哪部分转换为了ONNX格式?以及如何转的?

  • mask_decoder部分做了转onnx格式

  • 直接采用torch.onnx.export函数接口转的。因为没有采用transformer函数库,因为转换较为简单。

    • 先基于torch构建整个部分模型,构建模型输入。

    • 调用torch.onnx.export函数来转换

3|2Mask decoder部分 Transformer decoder block?

  • 该部分采用的动态mask预测头。

  • 在两个方向上(prompt-to-image embedding 和相反的)使用了prompt self-attention和cross-attention来达到更新所有embedding的目的。

3|3如何整合image_embedding,image_pe, sparse_prompt_embedding和dense_prompt_embedding的?

  • 通过mask decoder这一部分来做的。采用的是修改过的Transformer decoder block.

3|4points, boxes, text和masks四种类型prompt如何嵌入到网络中?

  • points, boxes, text在论文中称为sparse prompt。masks类型被称为dense prompt

  • points和boxes 是以positional encodings(位置编码)和每个提示类型的学习嵌入来表示的。

  • text是来自CLIP的text encoder表示的。从demo中并没有看到text输入的prompt, 从issue #93中验证了这点

  • mask是使用卷积嵌入,并与图像embedding逐元素求和

3|5什么样的任务具有zero-shot泛化能力?

  • 模型以promptable的方式训练得到,因此具备zero-shot的泛化能力

__EOF__

本文作者Danno
本文链接https://www.cnblogs.com/shiwanghualuo/p/17527968.html
关于博主:评论和私信会在第一时间回复。或者直接私信我。
版权声明:本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议。转载请注明出处!
声援博主:如果您觉得文章对您有帮助,可以点击文章右下角推荐一下。您的鼓励是博主的最大动力!
posted @   Danno  阅读(237)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 单元测试从入门到精通
· 上周热点回顾(3.3-3.9)
· winform 绘制太阳,地球,月球 运作规律
点击右上角即可分享
微信分享提示