第二十章 多线程
多线程
本章将介绍Python中的多线程编程。多线程一直是Python学习中的重点和难点,需要反复练习和研究。
1. 线程和进程
在学习多线程的使用之前,需要先了解线程、进程的概念。
进程
进程(Process,有时被称为重量级进程)是程序的一次执行。每个进程都有自己的地址空间、内存、数据栈以及记录运行轨迹的辅助数据,操作系统管理运行的所有进程,并为这些进程公平分配时间。进程可以通过fork和spawn操作完成其他任务。
因为各个进程有自己的内存空间、数据栈等,所以只能使用进程间通信(Inter Process Communication, IPC),而不能直接共享信息。
线程
线程(Thread,有时被称为轻量级进程)跟进程有些相似,不同的是所有线程运行在同一个进程中,共享运行环境。
线程有开始、顺序执行和结束3部分,有一个自己的指令指针,记录运行到什么地方。线程的运行可能被抢占(中断)或暂时被挂起(睡眠),从而让其他线程运行,这叫作让步。
一个进程中的各个线程之间共享同一块数据空间,所以线程之间可以比进程之间更方便地共享数据和相互通信。
线程一般是并发执行的。正是由于这种并行和数据共享的机制,使得多个任务的合作变得可能。实际上,在单CPU系统中,真正的并发并不可能,每个线程会被安排成每次只运行一小会儿,然后就把CPU让出来,让其他线程运行。在进程的整个运行过程中,每个线程都只做自己的事,需要时再跟其他线程共享运行结果。多个线程共同访问同一块数据不是完全没有危险的,由于访问数据的顺序不一样,因此有可能导致数据结果不一致的问题,这叫作竞态条件。大多数线程库都带有一系列同步原语,用于控制线程的执行和数据的访问。
2. 使用线程
本小节主要学习 Python 中的 threading 模块。
全局解释器锁
Python代码的执行由Python虚拟机(解释器主循环)控制。Python在设计之初就考虑到在主循环中只能有一个线程执行,虽然Python解释器中可以“运行”多个线程,但是在任意时刻只有一个线程在解释器中运行。
Python虚拟机的访问由全局解释器锁(Global Interpreter Lock, GIL)控制,这个锁能保证同一时刻只有一个线程运行。
在多线程环境中,Python虚拟机按以下方式执行:
- 设置GIL。
- 切换到一个线程运行。
- 运行指定数量的字节码指令或线程主动让出控制(可以调用time.sleep(0))。
- 把线程设置为睡眠状态。
- 解锁GIL。
- 再次重复以上所有步骤。
在调用外部代码(如C/C++扩展函数)时,GIL将被锁定,直到这个函数结束为止(由于在此期间没有运行Python的字节码,因此不会做线程切换),编写扩展的程序员可以主动解锁GIL。
多任务的概念
什么叫 "多任务" 呢?简单地说,就是操作系统可以同时运行多个任务。打个比方,你一边在用浏览器上网,一边在听MP3,一边在用Word赶作业,这就是多任务,至少同时有3个任务正在运行。还有很多任务悄悄地在后台同时运行着,只是桌面上没有显示而已。
现在,多核CPU已经非常普及了,但是,即使过去的单核CPU,也可以执行多任务。由于CPU执行代码都是顺序执行的,那么,单核CPU是怎么执行多任务的呢?
答案就是: 操作系统轮流让各个任务交替执行,任务1执行0.01秒,切换到任务2,任务2执行0.01秒,再切换到任务3,执行0.01秒……这样反复执行下去。表面上看,每个任务都是交替执行的,但是,由于CPU的执行速度实在是太快了,我们感觉就像所有任务都在同时执行一样。
真正的并行执行多任务只能在多核CPU上实现,但是,由于任务数量远远多于CPU的核心数量,所以,操作系统也会自动把很多任务轮流调度到每个核心上执行。
注意:
- 并发:指的是任务数多余cpu核数,通过操作系统的各种任务调度算法,实现用多个任务“一起”执行(实际上总有一些任务不在执行,因为切换任务的速度相当快,看上去一起执行而已)
- 并行:指的是任务数小于等于cpu核数,即任务真的是一起执行的。
threading 模块的使用
单线程代码示例:
import time
def print_hello():
print('hello')
time.sleep(1)
if __name__ == "__main__":
for i in range(5):
print_hello()
多线程代码示例:
import time
import threading
def print_hello():
print('hello')
time.sleep(1)
if __name__ == "__main__":
t = threading.Thread(target=print_hello)
t.start()
主线程等待所有子线程结束后退出
import threading
from time import sleep, ctime
def sing():
for i in range(3):
print(f'正在唱歌: {i}')
sleep(1)
def dance():
for i in range(3):
print(f'正在跳舞: {i}')
sleep(1)
if __name__ == "__main__":
print(f'程序开始: {ctime()}')
t1 = threading.Thread(target=sing)
t2 = threading.Thread(target=dance)
t1.start()
t2.start()
# 注释下一行代码查看程序是否立即退出
# sleep(5)
print(f'程序结束: {ctime()}')
查看线程数量
import threading
from time import sleep, ctime
def sing():
for i in range(3):
print(f'正在唱歌: {i}')
sleep(1)
def dance():
for i in range(3):
print(f'正在跳舞: {i}')
sleep(1)
if __name__ == "__main__":
print(f'程序开始: {ctime}')
t1 = threading.Thread(target=sing)
t2 = threading.Thread(target=dance)
t1.start()
t2.start()
while True:
length = len(threading.enumerate())
print(f'当前线程数量: {length}')
if length <= 1:
break
sleep(0.5)
线程执行代码的封装
通过上一小节,能够看出,通过使用threading模块能完成多任务的程序开发,为了让每个线程的封装性更完美,所以使用threading模块时,往往会定义一个新的子类class,只要继承threading.Thread
就可以了,然后重写run
方法。
示例如下:
import time
import threading
class MyThread(threading.Thread):
def run(self):
for i in range(3):
time.sleep(1)
# self.name是threading模块中的一个方法 保存的是当前线程的名称
msg = '我是 ' + self.name + ' @ ' + str(i)
print(msg)
if __name__ == "__main__":
t = MyThread()
t.start()
说明:python的threading.Thread类有一个run方法,用于定义线程的功能函数,可以在自己的线程类中覆盖该方法。而创建自己的线程实例后,通过Thread类的start方法,可以启动该线程,交给python虚拟机进行调度,当该线程获得执行的机会时,就会调用run方法执行线程。
线程的执行顺序
import time
import threading
class MyThread(threading.Thread):
def run(self):
for i in range(3):
time.sleep(1)
msg = '我是 ' + self.name + ' @ ' + str(i)
print(msg)
def test():
for i in range(5):
t = MyThread()
t.start()
if __name__ == "__main__":
test()
说明:从代码和执行结果我们可以看出,多线程程序的执行顺序是不确定的。当执行到sleep语句时,线程将被阻塞(Blocked),到sleep结束后,线程进入就绪(Runnable)状态,等待调度。而线程调度将自行选择一个线程执行。上面的代码中只能保证每个线程都运行完整个run函数,但是线程的启动顺序、run函数中每次循环的执行顺序都不能确定。
总结
- 每个线程默认有一个名字,尽管上面的例子中没有指定线程对象的name,但是python会自动为线程指定一个名字。
- 当线程的run()方法结束时该线程完成。
- 无法控制线程调度程序,但可以通过别的方式来影响线程调度的方式。
3. 多线程 - 共享全局变量
整型类型共享
import time
import threading
g_num = 100
def work_1():
global g_num
for i in range(3):
# 循环相加三次
g_num += 1
print(f"子线程1中计算得出的值为: {g_num}")
def work_2():
global g_num
print(f'子线程2中获取到的值为: {g_num}')
if __name__ == '__main__':
# 线程启动之前获取全局变量
print(f'子线程未启动之前主线程获取的值为: {g_num}')
# 创建线程对象
t1 = threading.Thread(target=work_1)
t1.start()
# 通过延迟保证t1线程中的事情做完
time.sleep(0.1)
t2 = threading.Thread(target=work_2)
t2.start()
time.sleep(0.1)
print(f'主线程最终获取到的值为: {g_num}')
序列类型共享
import time
import threading
g_nums = [11, 22, 33]
def work_1(nums):
# 在全局列表中添加一个元素
nums.append(44)
print(f'子线程1添加完成之后的列表元素为: {nums}')
def work_2(nums):
print(f'子线程2获取的列表元素为: {nums}')
if __name__ == '__main__':
t1 = threading.Thread(target=work_1, args=(g_nums,))
t1.start()
# 确保子线程1完成操作后再执行一下代码
time.sleep(0.1)
t2 = threading.Thread(target=work_2, args=(g_nums,))
t2.start()
time.sleep(0.1)
print(f'主线程获取到的全局列表元素为: {g_nums}')
总结:
- 在一个进程内的所有线程共享全局变量,很方便在多个线程间共享数据
- 缺点就是,线程是对全局变量随意更改可能造成多线程之间对全局变量的混乱(即线程非安全)
4. 多线程 - 共享全局变量问题
多线程开发可能遇到的问题
假设两个线程t1和t2都要对全局变量g_num(默认是0)进行加1运算,t1和t2都各对g_num加10次,g_num的最终的结果应该为20。
但是由于是多线程同时操作,有可能出现下面情况:
- 在g_num=0时,t1取得g_num=0。此时系统把t1调度为”sleeping”状态,把t2转换为”running”状态,t2也获得g_num=0
- 然后t2对得到的值进行加1并赋给g_num,使得g_num=1
- 然后系统又把t2调度为”sleeping”,把t1转为”running”。线程t1又把它之前得到的0加1后赋值给g_num。
- 这样导致虽然t1和t2都对g_num加1,但结果仍然是g_num=1
示例代码一:
import threading
import time
g_num = 0
def work_1(num):
global g_num
for i in range(num):
g_num += 1
print(f"线程1计算的结果为: {g_num}")
def work_2(num):
global g_num
for i in range(num):
g_num += 1
print(f"线程2计算的结果为: {g_num}")
if __name__ == "__main__":
print(f"线程创建之前g_num的值为: {g_num}")
t1 = threading.Thread(target=work_1, args=(100,))
t1.start()
t2 = threading.Thread(target=work_2, args=(100,))
t2.start()
# 等待子线程任务执行完毕后再执行主线程代码
while len(threading.enumerate()) != 1:
time.sleep(1)
print("2个线程对同一个全局变量操作之后的最终结果是:%s" % g_num)
示例代码二:
import threading
import time
g_num = 0
def work_1(num):
global g_num
for i in range(num):
g_num += 1
print(f"线程1计算的结果为: {g_num}")
def work_2(num):
global g_num
for i in range(num):
g_num += 1
print(f"线程2计算的结果为: {g_num}")
if __name__ == "__main__":
print(f"线程创建之前g_num的值为: {g_num}")
t1 = threading.Thread(target=work_1, args=(1000000,))
t1.start()
t2 = threading.Thread(target=work_2, args=(1000000,))
t2.start()
# 等待子线程任务执行完毕后再执行主线程代码
while len(threading.enumerate()) != 1:
time.sleep(1)
print("2个线程对同一个全局变量操作之后的最终结果是:%s" % g_num)
结论:如果多个线程同时对同一个全局变量操作,会出现资源竞争问题,从而数据结果会不正确
5. 同步的概念
同步就是协同步调,按预定的先后次序进行运行。如:你说完,我再说。
"同" 字从字面上容易理解为一起动作
其实不是,"同" 字应是指协同、协助、互相配合。
如进程、线程同步,可理解为进程或线程A和B一块配合,A执行到一定程度时要依靠B的某个结果,于是停下来,示意B运行;B执行,再将结果给A;A再继续操作。
解决线程同时修改全局变量的方式
对于上一小节提出的那个计算错误的问题,可以通过线程同步来进行解决
思路,如下:
- 系统调用t1,然后获取到g_num的值为0,此时上一把锁,即不允许其他线程操作g_num
- t1对g_num的值进行+1
- t1解锁,此时g_num的值为1,其他的线程就可以使用g_num了,而且是g_num的值不是0而是1
- 同理其他线程在对g_num进行修改时,都要先上锁,处理完后再解锁,在上锁的整个过程中不允许其他线程访问,就保证了数据的正确性
6. 互斥锁
当多个线程几乎同时修改某一个共享数据的时候,需要进行同步控制
线程同步能够保证多个线程安全访问竞争资源,最简单的同步机制是引入互斥锁。
互斥锁为资源引入一个状态:锁定 / 非锁定
某个线程要更改共享数据时,先将其锁定,此时资源的状态为 "锁定",其他线程不能更改;直到该线程释放资源,将资源的状态变成 "非锁定",其他的线程才能再次锁定该资源。互斥锁保证了每次只有一个线程进行写入操作,从而保证了多线程情况下数据的正确性。
threading模块中定义了Lock类,可以方便的处理锁定:
# 创建锁
mutex = threading.Lock()
# 锁定
mutex.acquire()
# 释放
mutex.release()
注意点:
- 如果这个锁之前是没有上锁的,那么acquire不会堵塞
- 如果在调用acquire对这个锁上锁之前 它已经被 其他线程上了锁,那么此时acquire会堵塞,直到这个锁被解锁为止
互斥锁的使用
import threading
import time
# 创建一个互斥锁
# 默认是未上锁的状态
mutex = threading.Lock()
# 全局变量
g_num = 0
def add_number_1(num):
global g_num
for i in range(num):
mutex.acquire() # 上锁
g_num += 1
mutex.release() # 解锁
print(f"线程1计算得出的结果为: {g_num}")
def add_number_2(num):
global g_num
for i in range(num):
mutex.acquire() # 上锁
g_num += 1
mutex.release() # 解锁
print(f"线程2计算得出的结果为: {g_num}")
if __name__ == "__main__":
# 创建2个线程,让他们各自对g_num加1000000次
p1 = threading.Thread(target=add_number_1, args=(1000000,))
p1.start()
p2 = threading.Thread(target=add_number_2, args=(1000000,))
p2.start()
# 等待计算完成
while len(threading.enumerate()) != 1:
time.sleep(1)
print("2个线程对同一个全局变量操作之后的最终结果是:%s" % g_num)
可以看到最后的结果,加入互斥锁后,其结果与预期相符。
上锁解锁过程
当一个线程调用锁的acquire()方法获得锁时,锁就进入“locked”状态。
每次只有一个线程可以获得锁。如果此时另一个线程试图获得这个锁,该线程就会变为“blocked”状态,称为“阻塞”,直到拥有锁的线程调用锁的release()方法释放锁之后,锁进入“unlocked”状态。
线程调度程序从处于同步阻塞状态的线程中选择一个来获得锁,并使得该线程进入运行(running)状态。
总结:
锁的好处:
- 确保了某段关键代码只能由一个线程从头到尾完整地执行
锁的坏处:
- 阻止了多线程并发执行,包含锁的某段代码实际上只能以单线程模式执行,效率就大大地下降了
- 由于可以存在多个锁,不同的线程持有不同的锁,并试图获取对方持有的锁时,可能会造成死锁
7. 死锁
在线程间共享多个资源的时候,如果两个线程分别占有一部分资源并且同时等待对方的资源,就会造成死锁。
尽管死锁很少发生,但一旦发生就会造成应用的停止响应。
死锁代码案例
#coding=utf-8
import threading
import time
mutexA = threading.Lock()
mutexB = threading.Lock()
class MyThread1(threading.Thread):
def run(self):
# 对mutexA上锁
mutexA.acquire()
# mutexA上锁后,延时1秒,等待另外那个线程 把mutexB上锁
print(self.name+'----do1---up----')
time.sleep(1)
# 此时会堵塞,因为这个mutexB已经被另外的线程抢先上锁了
mutexB.acquire()
print(self.name+'----do1---down----')
mutexB.release()
# 对mutexA解锁
mutexA.release()
class MyThread2(threading.Thread):
def run(self):
# 对mutexB上锁
mutexB.acquire()
# mutexB上锁后,延时1秒,等待另外那个线程 把mutexA上锁
print(self.name+'----do2---up----')
time.sleep(1)
# 此时会堵塞,因为这个mutexA已经被另外的线程抢先上锁了
mutexA.acquire()
print(self.name+'----do2---down----')
mutexA.release()
# 对mutexB解锁
mutexB.release()
if __name__ == '__main__':
t1 = MyThread1()
t2 = MyThread2()
t1.start()
t2.start()
8. 线程池
系统启动一个新线程的成本是比较高的,因为它涉及与操作系统的交互。在这种情形下,使用线程池可以很好地提升性能,尤其是当程序中需要创建大量生存期很短暂的线程时,更应该考虑使用线程池。
线程池在系统启动时即创建大量空闲的线程,程序只要将一个函数提交给线程池,线程池就会启动一个空闲的线程来执行它。当该函数执行结束后,该线程并不会死亡,而是再次返回到线程池中变成空闲状态,等待执行下一个函数。
此外,使用线程池可以有效地控制系统中并发线程的数量。当系统中包含有大量的并发线程时,会导致系统性能急剧下降,甚至导致 Python解释器崩溃,而线程池的最大线程数参数可以控制系统中并发线程的数量不超过此数。
线程池的使用
线程池的基类是 concurrent.futures 模块中的 Executor,Executor 提供了两个子类,即 ThreadPoolExecutor 和 ProcessPoolExecutor,其中 ThreadPoolExecutor 用于创建线程池,而 ProcessPoolExecutor 用于创建进程池。
如果使用线程池/进程池来管理并发编程,那么只要将相应的 task 函数提交给线程池/进程池,剩下的事情就由线程池/进程池来搞定。
Exectuor 提供了如下常用方法:
- submit(fn, *args, **kwargs):将 fn 函数提交给线程池。*args 代表传给 fn 函数的参数,**kwargs 代表以关键字参数的形式为 fn 函数传入参数。
- map(func, *iterables, timeout=None, chunksize=1):该函数类似于全局函数 map(func, *iterables),只是该函数将会启动多个线程,以异步方式立即对 iterables 执行 map 处理。
- shutdown(wait=True):关闭线程池。
程序将 task 函数提交(submit)给线程池后,submit 方法会返回一个 Future 对象,Future 类主要用于获取线程任务函数的返回值。由于线程任务会在新线程中以异步方式执行,因此,线程执行的函数相当于一个 "将来完成" 的任务,所以 Python 使用 Future 来代表。
Future 提供了如下方法:
- cancel():取消该 Future 代表的线程任务。如果该任务正在执行,不可取消,则该方法返回 False;否则,程序会取消该任务,并返回 True。
- cancelled():返回 Future 代表的线程任务是否被成功取消。
- running():如果该 Future 代表的线程任务正在执行、不可被取消,该方法返回 True。
- done():如果该 Funture 代表的线程任务被成功取消或执行完成,则该方法返回 True。
- result(timeout=None):获取该 Future 代表的线程任务最后返回的结果。如果 Future 代表的线程任务还未完成,该方法将会阻塞当前线程,其中 timeout 参数指定最多阻塞多少秒。
- exception(timeout=None):获取该 Future 代表的线程任务所引发的异常。如果该任务成功完成,没有异常,则该方法返回 None。
- add_done_callback(fn):为该 Future 代表的线程任务注册一个 "回调函数",当该任务成功完成时,程序会自动触发该 fn 函数。
在用完一个线程池后,应该调用该线程池的 shutdown() 方法,该方法将启动线程池的关闭序列。调用 shutdown() 方法后的线程池不再接收新任务,但会将以前所有的已提交任务执行完成。当线程池中的所有任务都执行完成后,该线程池中的所有线程都会死亡。
使用线程池来执行线程任务的步骤如下:
- 调用 ThreadPoolExecutor 类的构造器创建一个线程池。
- 定义一个普通函数作为线程任务。
- 调用 ThreadPoolExecutor 对象的 submit() 方法来提交线程任务。
- 当不想提交任何任务时,调用 ThreadPoolExecutor 对象的 shutdown() 方法来关闭线程池。
代码示例
from concurrent.futures import ThreadPoolExecutor
import threading
import time
# 定义一个准备作为线程任务的函数
def action(max):
my_sum = 0
for i in range(max):
print(threading.current_thread().name + ' ' + str(i))
my_sum += i
return my_sum
# 创建一个包含2条线程的线程池
pool = ThreadPoolExecutor(max_workers=2)
# 向线程池提交一个task, 50会作为action()函数的参数
future1 = pool.submit(action, 50)
# 向线程池再提交一个task, 100会作为action()函数的参数
future2 = pool.submit(action, 100)
# 判断future1代表的任务是否结束
print(future1.done())
time.sleep(3)
# 判断future2代表的任务是否结束
print(future2.done())
# 查看future1代表的任务返回的结果
print(future1.result())
# 查看future2代表的任务返回的结果
print(future2.result())
# 关闭线程池
pool.shutdown()
上面程序中,第 13 行代码创建了一个包含两个线程的线程池,接下来的两行代码只要将 action() 函数提交(submit)给线程池,该线程池就会负责启动线程来执行 action() 函数。这种启动线程的方法既优雅,又具有更高的效率。
当程序把 action() 函数提交给线程池时,submit() 方法会返回该任务所对应的 Future 对象,程序立即判断 futurel 的 done() 方法,该方法将会返回 False(表明此时该任务还未完成)。接下来主程序暂停 3 秒,然后判断 future2 的 done() 方法,如果此时该任务已经完成,那么该方法将会返回 True。
程序最后通过 Future 的 result() 方法来获取两个异步任务返回的结果。
当程序使用 Future 的 result() 方法来获取结果时,该方法会阻塞当前线程,如果没有指定 timeout 参数,当前线程将一直处于阻塞状态,直到 Future 代表的任务返回。
获取执行结果
前面程序调用了 Future 的 result() 方法来获取线程任务的运回值,但该方法会阻塞当前主线程,只有等到线程任务完成后,result() 方法的阻塞才会被解除。
如果程序不希望直接调用 result() 方法阻塞线程,则可通过 Future 的 add_done_callback() 方法来添加回调函数,该回调函数形如 fn(future)。当线程任务完成后,程序会自动触发该回调函数,并将对应的 Future 对象作为参数传给该回调函数。
示例代码
from concurrent.futures import ThreadPoolExecutor
import threading
import time
# 定义一个准备作为线程任务的函数
def action(max):
my_sum = 0
for i in range(max):
print(threading.current_thread().name + ' ' + str(i))
my_sum += i
return my_sum
# 创建一个包含2条线程的线程池
with ThreadPoolExecutor(max_workers=2) as pool:
# 向线程池提交一个task, 50会作为action()函数的参数
future1 = pool.submit(action, 50)
# 向线程池再提交一个task, 100会作为action()函数的参数
future2 = pool.submit(action, 100)
def get_result(future):
print(future.result())
# 为future1添加线程完成的回调函数
future1.add_done_callback(get_result)
# 为future2添加线程完成的回调函数
future2.add_done_callback(get_result)
print('--------------')
上面主程序分别为 future1、future2 添加了同一个回调函数,该回调函数会在线程任务结束时获取其返回值。
主程序的最后一行代码打印了一条横线。由于程序并未直接调用 future1、future2 的 result() 方法,因此主线程不会被阻塞,可以立即看到输出主线程打印出的横线。接下来将会看到两个新线程并发执行,当线程任务执行完成后,get_result() 函数被触发,输出线程任务的返回值。
另外,由于线程池实现了上下文管理协议(Context Manage Protocol),因此,程序可以使用 with 语句来管理线程池,这样即可避免手动关闭线程池,如上面的程序所示。
此外,Exectuor 还提供了一个 map(func, *iterables, timeout=None, chunksize=1)
方法,该方法的功能类似于全局函数 map(),区别在于线程池的 map() 方法会为 iterables 的每个元素启动一个线程,以并发方式来执行 func 函数。这种方式相当于启动 len(iterables) 个线程,井收集每个线程的执行结果。
例如,如下程序使用 Executor 的 map() 方法来启动线程,并收集线程任务的返回值:
from concurrent.futures import ThreadPoolExecutor
import threading
import time
# 定义一个准备作为线程任务的函数
def action(max):
my_sum = 0
for i in range(max):
print(threading.current_thread().name + ' ' + str(i))
my_sum += i
return my_sum
# 创建一个包含4条线程的线程池
with ThreadPoolExecutor(max_workers=4) as pool:
# 使用线程执行map计算
# 后面元组有3个元素,因此程序启动3条线程来执行action函数
results = pool.map(action, (50, 100, 150))
print('--------------')
for r in results:
print(r)
上面程序使用 map() 方法来启动 3 个线程(该程序的线程池包含 4 个线程,如果继续使用只包含两个线程的线程池,此时将有一个任务处于等待状态,必须等其中一个任务完成,线程空闲出来才会获得执行的机会),map() 方法的返回值将会收集每个线程任务的返回结果。
运行上面程序,同样可以看到 3 个线程并发执行的结果,最后通过 results 可以看到 3 个线程任务的返回结果。
通过上面程序可以看出,使用 map() 方法来启动线程,并收集线程的执行结果,不仅具有代码简单的优点,而且虽然程序会以并发方式来执行 action() 函数,但最后收集的 action() 函数的执行结果,依然与传入参数的结果保持一致。也就是说,上面 results 的第一个元素是 action(50) 的结果,第二个元素是 action(100) 的结果,第三个元素是 action(150) 的结果。