【UE4 C++ 基础知识】<15> 智能指针 TSharedPtr、UniquePtr、TWeakPtr、TSharedRef
基本概念
- UE4 对 UObject 对象提供垃圾回收
- UE4 对原生对象不提供垃圾回收,需要手动进行清理
- 方式
- malloc / free
- new / delete
new与malloc的区别在于,new在分配内存完成之后会调用构造函数。
- 缺点
- 如果不及时清理,则会占用内存,或者导致内存泄漏
- 如果不小心提前清理,则会导致野指针
- 方式
- UE4 提供共享指针库来管理内存,它是C++11智能指针的自定义实现
- 分类
- TSharedPtr
- UniquePtr
- TWeakPtr
- TSharedRef
- 优点
- 防止内存泄漏 共享引用不存在时,智能指针(弱指针除外)会自动删除对象。
- 弱引用 弱指针会中断引用循环并阻止悬挂指针。
- 可选择的线程安全 虚幻智能指针库包括线程安全代码,可跨线程管理引用计数。如无需线程安全,可用其换取更好性能。
- 运行时安全 共享引用从不为空,可固定随时取消引用。
- 授予意图 可轻松区分对象所有者和观察者。
- 内存 智能指针在64位下仅为C++指针大小的两倍(加上共享的16字节引用控制器)。唯一指针除外,其与C++指针大小相同。
- 分类
共享指针 TSharedPtr
- TSharedPtr 不能指向 UObject。如果想要指向UObject,可以使用TWeakObjectPtr
- TSharedPtr 可以对FStructures 使用
创建/初始化/ 重置
-
MakeShareable()/MakeShared<T>()
函数 -
Reset()
函数class SimpleObject { public: SimpleObject() { UE_LOG(LogTemp, Warning, TEXT(__FUNCTION__"SimpleObject Construct")); } ~SimpleObject() { UE_LOG(LogTemp, Warning, TEXT(__FUNCTION__"SimpleObject Destruct")); } void ExeFun() { UE_LOG(LogTemp, Warning, TEXT(__FUNCTION__"Execute")); } };
// 快速创建共享指针 TSharedPtr<SimpleObject> simObjectPtr(new SimpleObject()); // MakeShareable 创建共享指针 TSharedPtr<SimpleObject> simObjectPtr2 = MakeShareable(new SimpleObject()); // 创建线程安全 TSharedPtr<SimpleObject, ESPMode::ThreadSafe> simObjectPtr3 = MakeShareable(new SimpleObject()); // 查看引用计数 UE_LOG(LogTemp, Warning, TEXT(__FUNCTION__"引用计数: simObjectPtr[%d], simObjectPtr2[%d], simObjectPtr3[%d] "), simObjectPtr.GetSharedReferenceCount(), simObjectPtr2.GetSharedReferenceCount(), simObjectPtr3.GetSharedReferenceCount()); // 重置共享指针 simObjectPtr.Reset(); simObjectPtr2 = nullptr;
复制/转移
-
赋值
-
MoveTemp / MoveTempIfPossible
// 复制共享指针 TSharedPtr<SimpleObject> simObjectPtr_copy = simObjectPtr; UE_LOG(LogTemp, Warning, TEXT(__FUNCTION__"引用计数: simObjectPtr[%d], simObjectPtr_copy[%d],"), simObjectPtr.GetSharedReferenceCount(), simObjectPtr_copy.GetSharedReferenceCount()); // 转移共享指针 TSharedPtr<SimpleObject> simObjectPtr_MoveTemp = MoveTemp(simObjectPtr_copy); // 另 MoveTempIfPossible() UE_LOG(LogTemp, Warning, TEXT(__FUNCTION__"引用计数: simObjectPtr[%d], simObjectPtr_copy[%d], simObjectPtr_MoveTemp[%d]"), simObjectPtr.GetSharedReferenceCount(), simObjectPtr_copy.GetSharedReferenceCount(), simObjectPtr_MoveTemp.GetSharedReferenceCount()
条件判断 / 对比 / 解引用与访问
-
->
运算符 -
Get()
函数 -
IsValid()
函数 -
==
!=
运算符if (simObjectPtr) // 条件判断 { simObjectPtr->ExeFun(); // 解引用 } if (simObjectPtr.Get() != nullptr) // 条件判断 { simObjectPtr.Get()->ExeFun(); //解引用 } if (simObjectPtr.IsValid()) // 条件判断 { (*simObjectPtr).ExeFun(); // 解引用 } if (simObjectPtr == simObjectPtr_copy) // 对比 { UE_LOG(LogTemp, Warning, TEXT(__FUNCTION__"simObjectPtr_copy == simObjectPtr")); }
共享引用 TSharedRef
- 共享引用不可为空
- 不可用于 UObject对象
- 没有 IsValid() 函数
创建/初始化
-
MakeShareable()/MakeShared<T>()
函数// 创建共享引用 TSharedRef<SimpleObject> objRef(new SimpleObject()); TSharedRef<SimpleObject> objRef2 = MakeShareable(new SimpleObject()); TSharedRef<SimpleObject> objRef3 = MakeShared<SimpleObject>();
TSharedRef 与 TSharedPtr转换
-
隐式转化
-
ToSharedRef()
// TSharedRef -> TSharedPtr TSharedPtr<SimpleObject> objPtr = objRef; // TSharedPtr -> TSharedRef objRef3= objPtr.ToSharedRef();
比较
-
没有 IsValid() 函数
// 共享指针比较 if (objRef == objRef3) { UE_LOG(LogTemp, Warning, TEXT(__FUNCTION__"objRef == objRef3 , 引用计数:%d"), objPtr.GetSharedReferenceCount()); }
弱指针 TWeakPtr
- 与TSharedPtr相比,不参与引用计数
- 对象不存在共享指针时,TWeakPtr将自动失效
- 使用时需要判断有效性
创建/初始化/转换/重置
-
通过 TSharedPtr 创建
-
通过 TSharedRef 创建
-
运算符
=
赋值 -
IsValid()
函数判断有效性 -
Pin()
函数转成 TSharedPtr ,再解引用访问对象 -
Reset()
或nullptr
重置// 强指针创建弱指针 TSharedPtr<SimpleObject> ObjPtr=MakeShared<SimpleObject>(); TWeakPtr<SimpleObject> ObjWeakPtr(ObjPtr); UE_LOG(LogTemp, Warning, TEXT(__FUNCTION__"step1 引用计数:ObjPtr[%d]"), ObjPtr.GetSharedReferenceCount()); //强引用创建弱指针 TSharedRef<SimpleObject> objRef = MakeShareable(new SimpleObject()); TWeakPtr<SimpleObject> ObjWeakPtr2(objRef); TWeakPtr<SimpleObject> ObjWeakPtr_Copy = ObjWeakPtr; UE_LOG(LogTemp, Warning, TEXT(__FUNCTION__"step2 引用计数:ObjPtr[%d]"), ObjPtr.GetSharedReferenceCount()); // 判断有效性 if (ObjWeakPtr.IsValid()) { TSharedPtr<SimpleObject> ObjPtr2 = ObjWeakPtr.Pin(); ObjPtr2->ExeFun(); } // 清空强指针 ObjPtr.Reset(); TSharedPtr<SimpleObject> ObjPtr2 = ObjWeakPtr.Pin(); UE_LOG(LogTemp, Warning, TEXT(__FUNCTION__"step3 引用计数:ObjPtr[%d]"), ObjPtr.GetSharedReferenceCount()); // 判断有效性 if (!ObjPtr2) { UE_LOG(LogTemp, Warning, TEXT(__FUNCTION__"弱指针已空 ")); } // 重置 ObjWeakPtr.Reset(); ObjWeakPtr_Copy = nullptr;
唯一指针 TUniquePtr
- TUniquePtr 指向的对象只能被唯一指向,因而 Unique指针不能赋值给其它指针
- 不要为共享指针或共享引用引用的对象创建唯一指针
创建/初始化/判断/解引用/重置
-
MakeUnique
() -
IsValid()
-
->
运算符 -
Get()
函数 -
Release()
释放并返回指针 -
Reset()
或nullptr
重置// 创建唯一指针 TUniquePtr<SimpleObject> ObjUniquePtr = MakeUnique<SimpleObject>(); UE_LOG(LogTemp, Warning, TEXT(__FUNCTION__" Validity: ObjUniquePtr[%d]"), ObjUniquePtr.IsValid()); // 判断有效性 if (ObjUniquePtr.IsValid()) { ObjUniquePtr->ExeFun(); // 解引用 } // 释放指针,移交 TUniquePtr<SimpleObject> ObjUniquePtr2(ObjUniquePtr.Release()); UE_LOG(LogTemp, Warning, TEXT(__FUNCTION__" Validity: ObjUniquePtr[%d], ObjUniquePtr2[%d]"), ObjUniquePtr.IsValid(), ObjUniquePtr2.IsValid()); // 重置 ObjUniquePtr.Reset(); ObjUniquePtr2 = nullptr;
基类与派生类的智能转换
共享指针转换
-
派生类转基类 隐式转换
-
基类转派生类 StaticCastSharedPtr
-
非常量转常量 ConstCastSharedPtr
TSharedPtr<SimpleObject> simpleObj; TSharedPtr<ComplexObject> complexObj = MakeShared<ComplexObject>(); // 派生类转基类 simpleObj = complexObj; UE_LOG(LogTemp, Warning, TEXT(__FUNCTION__"simpleObj is %s"), simpleObj.IsValid() ? TEXT("Valid") : TEXT("Not Valid")); // 基类转派生类 TSharedPtr<ComplexObject> complexObj2 = StaticCastSharedPtr<ComplexObject>(simpleObj); UE_LOG(LogTemp, Warning, TEXT(__FUNCTION__"complexObj2 is %s"), complexObj2.IsValid() ? TEXT("Valid") : TEXT("Not Valid")); // 常量指针转非常量指针 const TSharedPtr<SimpleObject> simpleObj_const(new SimpleObject()); TSharedPtr<SimpleObject> simpleObj_mutable = ConstCastSharedPtr<SimpleObject>(simpleObj_const); UE_LOG(LogTemp, Warning, TEXT(__FUNCTION__"simpleObj_mutable is %s"), simpleObj_mutable.IsValid() ? TEXT("Valid") : TEXT("Not Valid"));
共享引用转换
- 隐式转换
- StaticCastSharedRef
// 创建唯一指针
TUniquePtr
UE_LOG(LogTemp, Warning, TEXT(FUNCTION" Validity: ObjUniquePtr[%d]"), ObjUniquePtr.IsValid());
// 判断有效性
if (ObjUniquePtr.IsValid())
{
ObjUniquePtr->ExeFun(); // 解引用
}
// 释放指针,移交
TUniquePtr<SimpleObject> ObjUniquePtr2(ObjUniquePtr.Release());
UE_LOG(LogTemp, Warning, TEXT(__FUNCTION__" Validity: ObjUniquePtr[%d], ObjUniquePtr2[%d]"), ObjUniquePtr.IsValid(), ObjUniquePtr2.IsValid());
// 重置
ObjUniquePtr.Reset();
ObjUniquePtr2 = nullptr;
- ConstStaticCastSharedRef
代码省略
助手类 TSharedFromThis
-
自定义类继承 TSharedFromThis 模板类
-
TSharedFromThis 会保存一个弱指针
-
AsShared()
将裸指针转智共享引用,可再隐式转为共享指针 -
SharedThis(this)
会返回具备"this"类型的TSharedRef -
不要在构造函数中调用 AsShared 或 Shared,共享引用此时并未初始化,将导致崩溃或断言
// 基类 class BaseClass :public TSharedFromThis<BaseClass> { public: BaseClass() { UE_LOG(LogTemp, Warning, TEXT(__FUNCTION__)); } virtual ~BaseClass() { UE_LOG(LogTemp, Warning, TEXT(__FUNCTION__)); } virtual void ExeFun() { TSharedRef<BaseClass> ThisAsSharedRef = AsShared(); } }; // 派生类 class ChildClass :public BaseClass { public: ChildClass() { UE_LOG(LogTemp, Warning, TEXT(__FUNCTION__)); } virtual ~ChildClass() { UE_LOG(LogTemp, Warning, TEXT(__FUNCTION__)); } virtual void ExeFun() override{ //AsShared()返回 TSharedRef<BaseClass>, 因而编译不通过 //TSharedRef<ChildClass> AsSharedRef = AsShared(); TSharedRef<ChildClass> AsSharedRef = SharedThis(this); } };
TSharedPtr<BaseClass> BaseClassPtr = MakeShared<BaseClass>(); UE_LOG(LogTemp, Warning, TEXT(__FUNCTION__" 引用计数:BaseClassPtr[%d]"), BaseClassPtr.GetSharedReferenceCount()); BaseClass* tempPtr = BaseClassPtr.Get(); TSharedPtr<BaseClass> BaseClassPtr_Shared =tempPtr->AsShared(); UE_LOG(LogTemp, Warning, TEXT(__FUNCTION__" 引用计数:BaseClassPtr[%d], BaseClassPtr_Shared[%d]"), BaseClassPtr.GetSharedReferenceCount(), BaseClassPtr_Shared.GetSharedReferenceCount()); // 使用下面语句运行,程序死机 // TSharedPtr<BaseClass> BaseClassPtr_New = MakeShareable(tempPtr);
注意
- 避免将数据作为 TSharedRef 或 TSharedPtr 参数传到函数,此操作将因取消引用和引用计数而产生开销。相反,建议将引用对象作为 const & 进行传递。
- 共享指针与虚幻对象(UObject 及其衍生类)不兼容。引擎具有 UObject 管理的单独内存管理系统(对象处理文档),两个系统未互相重叠。
实践遇到的问题
-
按照附录源码头文件 Tip,智能指针其实可以作为函数参数的
-
智能指针在TArray里排序或者堆操作时,符号重载 operator 要在全局来写,原类里的貌似不识别
//用于排序比较 bool operator <(const TSharedPtr<FPathPoint>& a,const TSharedPtr<FPathPoint>& b) { return a->total_cost < b->total_cost; } //用于数组里的查找 bool operator ==(const TSharedPtr<FPathPoint>& a,const TSharedPtr<FPathPoint>& b) { return a->pos.Equals(b->pos, 1.0f); }
-
智能指针和原生指针混用,容易扑街,可能会遇到内存释放等问题
附录
- \Engine\Source\Runtime\Core\Public\Templates\SharedPointer.h 有更详细的说明
**
* SharedPointer - Unreal smart pointer library
*
* This is a smart pointer library consisting of shared references (TSharedRef), shared pointers (TSharedPtr),
* weak pointers (TWeakPtr) as well as related helper functions and classes. This implementation is modeled
* after the C++0x standard library's shared_ptr as well as Boost smart pointers.
*
* Benefits of using shared references and pointers:
*
* Clean syntax. You can copy, dereference and compare shared pointers just like regular C++ pointers.
* Prevents memory leaks. Resources are destroyed automatically when there are no more shared references.
* Weak referencing. Weak pointers allow you to safely check when an object has been destroyed.
* Thread safety. Includes "thread safe" version that can be safely accessed from multiple threads.
* Ubiquitous. You can create shared pointers to virtually *any* type of object.
* Runtime safety. Shared references are never null and can always be dereferenced.
* No reference cycles. Use weak pointers to break reference cycles.
* Confers intent. You can easily tell an object *owner* from an *observer*.
* Performance. Shared pointers have minimal overhead. All operations are constant-time.
* Robust features. Supports 'const', forward declarations to incomplete types, type-casting, etc.
* Memory. Only twice the size of a C++ pointer in 64-bit (plus a shared 16-byte reference controller.)
*
*
* This library contains the following smart pointers:
*
* TSharedRef - Non-nullable, reference counted non-intrusive authoritative smart pointer
* TSharedPtr - Reference counted non-intrusive authoritative smart pointer
* TWeakPtr - Reference counted non-intrusive weak pointer reference
*
*
* Additionally, the following helper classes and functions are defined:
*
* MakeShareable() - Used to initialize shared pointers from C++ pointers (enables implicit conversion)
* TSharedFromThis - You can derive your own class from this to acquire a TSharedRef from "this"
* StaticCastSharedRef() - Static cast utility function, typically used to downcast to a derived type.
* ConstCastSharedRef() - Converts a 'const' reference to 'mutable' smart reference
* StaticCastSharedPtr() - Dynamic cast utility function, typically used to downcast to a derived type.
* ConstCastSharedPtr() - Converts a 'const' smart pointer to 'mutable' smart pointer
*
*
* Examples:
* - Please see 'SharedPointerTesting.inl' for various examples of shared pointers and references!
*
*
* Tips:
* - Use TSharedRef instead of TSharedPtr whenever possible -- it can never be nullptr!
* - You can call TSharedPtr::Reset() to release a reference to your object (and potentially deallocate)
* - Use the MakeShareable() helper function to implicitly convert to TSharedRefs or TSharedPtrs
* - You can never reset a TSharedRef or assign it to nullptr, but you can assign it a new object
* - Shared pointers assume ownership of objects -- no need to call delete yourself!
* - Usually you should "operator new" when passing a C++ pointer to a new shared pointer
* - Use TSharedRef or TSharedPtr when passing smart pointers as function parameters, not TWeakPtr
* - The "thread-safe" versions of smart pointers are a bit slower -- only use them when needed
* - You can forward declare shared pointers to incomplete types, just how you'd expect to!
* - Shared pointers of compatible types will be converted implicitly (e.g. upcasting)
* - You can create a typedef to TSharedRef< MyClass > to make it easier to type
* - For best performance, minimize calls to TWeakPtr::Pin (or conversions to TSharedRef/TSharedPtr)
* - Your class can return itself as a shared reference if you derive from TSharedFromThis
* - To downcast a pointer to a derived object class, to the StaticCastSharedPtr function
* - 'const' objects are fully supported with shared pointers!
* - You can make a 'const' shared pointer mutable using the ConstCastSharedPtr function
*
*
* Limitations:
*
* - Shared pointers are not compatible with Unreal objects (UObject classes)!
* - Currently only types with that have regular destructors (no custom deleters)
* - Dynamically-allocated arrays are not supported yet (e.g. MakeSharable( new int32[20] ))
* - Implicit conversion of TSharedPtr/TSharedRef to bool is not supported yet
*
*
* Differences from other implementations (e.g. boost:shared_ptr, std::shared_ptr):
*
* - Type names and method names are more consistent with Unreal's codebase
* - You must use Pin() to convert weak pointers to shared pointers (no explicit constructor)
* - Thread-safety features are optional instead of forced
* - TSharedFromThis returns a shared *reference*, not a shared *pointer*
* - Some features were omitted (e.g. use_count(), unique(), etc.)
* - No exceptions are allowed (all related features have been omitted)
* - Custom allocators and custom delete functions are not supported yet
* - Our implementation supports non-nullable smart pointers (TSharedRef)
* - Several other new features added, such as MakeShareable and nullptr assignment
*
*
* Why did we write our own Unreal shared pointer instead of using available alternatives?
*
* - std::shared_ptr (and even tr1::shared_ptr) is not yet available on all platforms
* - Allows for a more consistent implementation on all compilers and platforms
* - Can work seamlessly with other Unreal containers and types
* - Better control over platform specifics, including threading and optimizations
* - We want thread-safety features to be optional (for performance)
* - We've added our own improvements (MakeShareable, assign to nullptr, etc.)
* - Exceptions were not needed nor desired in our implementation
* - We wanted more control over performance (inlining, memory, use of virtuals, etc.)
* - Potentially easier to debug (liberal code comments, etc.)
* - Prefer not to introduce new third party dependencies when not needed
*
*/