计算潜在蒸散量PET的方法

目标是想计算相对湿润度指数MI

 得先计算PET:

PET的方法可以采用Thornthwaite方法和FAO Penman-Monteith方法,但是彭曼公式涉及到辐射,需要辐射数据比较麻烦,所以采用Thornthwaite方法

 原始数据:

 处理后的数据:

代码如下:

#!usr/bin/env python
# -*- coding:utf-8 -*-
"""
@author: Su
@file: calculateMI.py
@time: 2023/08/17
@desc:
"""
import pandas as pd
import numpy as np


df = pd.read_excel('processdata/lianxi/鄂尔多斯.xlsx')
df[df['temp']<0] = np.nan
ab = df.dropna(axis=0,how='all')

# 计算Hi
temp = ab.temp.values
T = np.power(temp/5,1.514)
Hi = pd.DataFrame(T)

# 创建一个新DataFrame放入分类好后的站点数据
df2 = pd.DataFrame(ab)
df2.insert(loc=7, column='Hi',value=Hi.values)
# 给站点分类
nameList1 = set(df2.name.values)


# 想将结果写入excel,需创建空的dataframe
df_all = pd.DataFrame(data=None)

for i in nameList1:
    # 进行站点遍历
    dfName = df2[df2['name'] == i]
    df3 = pd.DataFrame(dfName)
    # 分年求和
    nameList2 = set(df3.year.values)


    for j in nameList2:
        # 按年遍历
        dfYear = df3[df3['year'] == j]
        df4 = pd.DataFrame(dfYear)
        # 计算Hi的和
        H_sum = dfYear['Hi'].sum()
        df4.insert(loc=8, column='H_sum', value=H_sum)
        # 计算A值
        A = (6.75e-07)*np.power(H_sum,3) - (7.71e-05)*np.power(H_sum,2) + (1.792e-02)*H_sum + 0.49
        df4.insert(loc=9, column='A', value=A)
        # 提取temp、H_sum、A用于计算PET
        temp = df4.temp.values
        H_sum = df4.H_sum.values
        A = df4.A.values
        # 计算PET
        PET = 16 * np.power((10*temp)/H_sum,A)
        df4.insert(loc=10, column='PET',value=PET)
        df5 = pd.DataFrame(df4)
        # concat 合并有相同字段名的dataframe
        df_all = pd.concat([df_all, df5],ignore_index=True)

# 避免字段名重复写入,一般会做去重处理
data_list = df_all.drop_duplicates(keep='first')
# 写出数据
df_all.to_excel('processdata/lianxi/鄂尔多斯PET.xlsx', index=False)

 

posted @ 2023-08-21 16:17  秋刀鱼CCC  Views(2091)  Comments(0Edit  收藏  举报