51Nod 1315 合法整数集
一个整数集合S是合法的,指S的任意子集subS有Fun(SubS)!=X,其中X是一个固定整数,Fun(A)的定义如下:
A为一个整数集合,设A中有n个元素,分别为a0,a1,a2,...,an-1,那么定义:Fun(A)=a0 or a1 or ... or an-1;Fun({}) = 0,即空集的函数值为0.其中,or为或操作。
现在给你一个集合Y与整数X的值,问在集合Y至少删除多少个元素能使集合Y合法?
例如:Y = {1,2,4},X=7;显然现在的Y不合法,因为 1 or 2 or 4 = 7,但是删除掉任何一个元素后Y将合法。所以,答案是1.
Input
第一行两个整数N,X,其中N为Y集合元素个数,X如题所述,且1<=N<=50,1<=X<=1,000,000,000. 之后N行,每行一个整数yi,即集合Y中的第i个元素,且1<=yi<=1,000,000,000.
Output
一个整数,表示最少删除多少个元素。
Input示例
5 7 1 2 4 7 8
Output示例
2
注意是任意子集那么首先把所有可能得到x的元素找出来,最后求每个元素的贡献值
#include <iostream> #include <algorithm> #include <cstring> #include <cstdio> #include <vector> #include <queue> #include <stack> #include <cstdlib> #include <iomanip> #include <cmath> #include <cassert> #include <ctime> #include <map> #include <set> using namespace std; #pragma comment(linker, "/stck:1024000000,1024000000") #define lowbit(x) (x&(-x)) #define max(x,y) (x>=y?x:y) #define min(x,y) (x<=y?x:y) #define MAX 100000000000000000 #define MOD 1000000007 #define pi acos(-1.0) #define ei exp(1) #define PI 3.1415926535897932384626433832 #define ios() ios::sync_with_stdio(true) #define INF 0x3f3f3f3f #define mem(a) ((a,0,sizeof(a))) typedef long long ll; ll a[55],b[55],res[55],n,x,ans,y,cnt=100; int top=0; int main() { scanf("%lld%lld",&n,&x); ans=x; while(ans) { a[top++]=ans%2; ans/=2; } for(int i=0;i<n;i++) { scanf("%lld",&y); if((y|x)!=x) continue; int top=0; while(y) { if(y&1) b[top]++; y/=2; top++; } } for(int i=0;i<=50;i++) if(a[i]) cnt=min(cnt,b[i]); printf("%d\n",cnt); return 0; }