Try Again

卡特兰数

转自:http://www.cnblogs.com/kuangbin/archive/2012/03/21/2410516.html

卡特兰数又称卡塔兰数,是组合数学中一个常出现在各种计数问题中出现的数列。由以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名。

卡特兰数

前几项为 (OEIS中的数列A000108): 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, ...

 

令h(1)=1,h(2)=1,catalan数满足递归式:

 

例如:h(3)=h(1)*h(2)+h(2)*h(1)=1*1+1*1=2

 h(4)=h(1)*h(3)+h(2)*h(2)+h(3)*h(1)=1*2+1*1+2*1=5

 

h(0)=1;h(1)=1;h(2)=2;h(3)=5;  ····有另类的递归式

另类递归式:

  h(n)=h(n-1)*(4*n-2)/(n+1);

  该递推关系的解为:

h(n)=C(2n,n)/(n+1) (n=1,2,3,...)

 

卡特兰数的应用

  实质上都是递归等式的应用

括号化

  矩阵链乘: P=a1×a2×a3×……×an,依据乘法结合律,不改变其顺序,只用括号表示成对的乘积,试问有几种括号化的方案?(h(n)种)

出栈次序

  一个栈(无穷大)的进栈序列为1,2,3,…,n,有多少个不同的出栈序列?

  分析

  对于每一个数来说,必须进栈一次、出栈一次。我们把进栈设为状态‘1’,出栈设为状态‘0’。n个数的所有状态对应n个1和n个0组成的2n位二进制数。由于等待入栈的操作数按照1‥n的顺序排列、入栈的操作数b大于等于出栈的操作数a(a≤b),因此输出序列的总数目=由左而右扫描由n个1和n个0组成的2n位二进制数,1的累计数不小于0的累计数的方案种数。

  在2n位二进制数中填入n个1的方案数为c(2n,n),不填1的其余n位自动填0。从中减去不符合要求(由左而右扫描,0的累计数大于1的累计数)的方案数即为所求。

  不符合要求的数的特征是由左而右扫描时,必然在某一奇数位2m+1位上首先出现m+1个0的累计数和m个1的累计数,此后的2(n-m)-1位上有n-m个 1和n-m-1个0。如若把后面这2(n-m)-1位上的0和1互换,使之成为n-m个0和n-m-1个1,结果得1个由n+1个0和n-1个1组成的2n位数,即一个不合要求的数对应于一个由n+1个0和n-1个1组成的排列。

  反过来,任何一个由n+1个0和n-1个1组成的2n位二进制数,由于0的个数多2个,2n为偶数,故必在某一个奇数位上出现0的累计数超过1的累计数。同样在后面部分0和1互换,使之成为由n个0和n个1组成的2n位数,即n+1个0和n-1个1组成的2n位数必对应一个不符合要求的数。

  因而不合要求的2n位数与n+1个0,n-1个1组成的排列一一对应。

  显然,不符合要求的方案数为c(2n,n+1)。由此得出 输出序列的总数目=c(2n,n)-c(2n,n+1)=1/(n+1)*c(2n,n)。

  (这个公式的下标是从h(0)=1开始的)

  类似问题

有2n个人排成一行进入剧场。入场费5元。其中只有n个人有一张5元钞票,另外n人只有10元钞票,剧院无其它钞票,问有多少中方法使得只要有10元的人买票,售票处就有5元的钞票找零?(将持5元者到达视作将5元入栈,持10元者到达视作使栈中某5元出栈)

类似:
  (1)有2n个人排成一行进入剧场。入场费5元。其中只有n个人有一张5元钞票,另外n人只有10元钞票,剧院无其它钞票,问有多少中方法使得只要有10元的人买票,售票处就有5元的钞票找零?(将持5元者到达视作将5元入栈,持10元者到达视作使栈中某5元出栈)
  (2)在圆上选择2n个点,将这些点成对连接起来,使得所得到的n条线段不相交的方法数。

凸多边形三角剖分

  求将一个凸多边形区域分成三角形区域的方法数。

  类似:一位大城市的律师在她住所以北n个街区和以东n个街区处工作。每天她走2n个街区去上班。如果她从不穿越(但可以碰到)从家到办公室的对角线,那么有多少条可能的道路?

类似:在圆上选择2n个点,将这些点成对连接起来使得所得到的n条线段不相交的方法数?

类似:一位大城市的律师在她住所以北n个街区和以东n个街区处工作。每天她走2n个街区去上班。如果她
  从不穿越(但可以碰到)从家到办公室的对角线,那么有多少条可能的道路?
  类似:在圆上选择2n个点,将这些点成对连接起来使得所得到的n条线段不相交的方法数?

4.给定节点组成二叉树

  给定N个节点,能构成多少种形状不同的二叉树?
  (一定是二叉树!先取一个点作为顶点,然后左边依次可以取0至N-1个相对应的,右边是N-1到0个,两两配对相乘,就是h(0)*h(n-1) + h(2)*h(n-2) + ...... + h(n-1)h(0)=h(n))   (能构成h(N)个)

       在2n位二进制数中填入n个1的方案数为c(2n,n),不填1的其余n位自动填0。从中减去不符合要求(由左而右扫描,0的累计数大于1的累计数)的方案数即为所求。
       不符合要求的数的特征是由左而右扫描时,必然在某一奇数位2m+1位上首先出现m+1个0的累计数和m个1的累计数,此后的2(n-m)-1位上有n-m个 1和n-m-1个0。如若把后面这2(n-m)-1位上的0和1互换,使之成为n-m个0和n-m-1个1,结果得1个由n+1个0和n-1个1组成的2n位数,即一个不合要求的数对应于一个由n+1个0和n-1个1组成的排列。
       反过来,任何一个由n+1个0和n-1个1组成的2n位二进制数,由于0的个数多2个,2n为偶数,故必在某一个奇数位上出现0的累计数超过1的累计数。同样在后面部分0和1互换,使之成为由n个0和n个1组成的2n位数,即n+1个0和n-1个1组成的2n位数必对应一个不符合要求的数。

因而不合要求的2n位数与n+1个0,n-1个1组成的排列一一对应。

显然,不符合要求的方案数为c(2n,n+1)。由此得出输出序列的总数目=c(2n,n)-c(2n,n+1)=1/(n+1)*c(2n,n)。
(这个公式的下标是从h(0)=1开始的)

例题:HDU 1023      HDU  4165

posted @ 2017-08-07 17:15  十年换你一句好久不见  阅读(222)  评论(0编辑  收藏  举报