小小程序媛  
得之坦然,失之淡然,顺其自然,争其必然

题目

A robot is located at the top-left corner of a m x n grid (marked ‘Start’ in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish’ in the diagram below).

How many possible unique paths are there?
题目

Note: m and n will be at most 100.

分析

这是一道动态规划的题目:
对于一个mn矩阵,求解从初始点(0,0)到结束点(m1,n1)的路径条数,规定每次只能向右或向下走一步;

我们知道:

1.当i=0,j=[0,n1]时,f(i,j)=f(i,j1)=1; 因为每次只能向右走一步,只有一条路径;
2. 当i=[0,m1],j=0时,f(i,j)=f(i1,j)=1;因为每次只能向下走一步,只有一条路径;
3. 当(i,j)为其它时,f(i,j)=f(i1,j)+f(i,j1);因为此时可由(i1,j)向右走一步,或者(i,j1)向下走一步,为两者之和;

AC代码

//非递归实现回溯,会超时
class Solution {
public:
    int uniquePaths(int m, int n) {
        if (m == 0 || n == 0)
            return 0;
        vector<vector<int> > ret(m, vector<int>(n, 1));
        //如果矩阵为单行或者单列,则只有一条路径
        for (int i = 1; i < m; i++)
        for (int j = 1; j < n; j++)
            ret[i][j] = ret[i - 1][j] + ret[i][j - 1];

        return ret[m-1][n-1];
    }
};

递归实现算法(TLE)

class Solution {
public:
    int uniquePaths(int m, int n) {
        if (m == 0 || n == 0)
            return 0;
        //如果矩阵为单行或者单列,则只有一条路径
        else if (m == 1 || n == 1)
            return 1;

        else
            return uniquePaths(m, n - 1) + uniquePaths(m - 1, n);
    }
};

GitHub测试程序源码

posted on 2015-09-11 21:01  Coding菌  阅读(126)  评论(0编辑  收藏  举报