小小程序媛  
得之坦然,失之淡然,顺其自然,争其必然

题目

Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).
1
Range Sum Query 2D
The above rectangle (with the red border) is defined by (row1, col1) = (2, 1) and (row2, col2) = (4, 3), which contains sum = 8.

Example:
Given matrix = [
[3, 0, 1, 4, 2],
[5, 6, 3, 2, 1],
[1, 2, 0, 1, 5],
[4, 1, 0, 1, 7],
[1, 0, 3, 0, 5]
]

sumRegion(2, 1, 4, 3) -> 8
sumRegion(1, 1, 2, 2) -> 11
sumRegion(1, 2, 2, 4) -> 12
Note:
You may assume that the matrix does not change.
There are many calls to sumRegion function.
You may assume that row1 ≤ row2 and col1 ≤ col2.

分析

思想与上一题相同。

注意下标处理方式。

AC代码

class NumMatrix {
public:
    NumMatrix(vector<vector<int>> &matrix) {
        if (matrix.empty())
            return;

        //求得二维矩阵的行列
        int m = matrix.size(), n = matrix[0].size();
        sums = vector<vector<int>>(m+1, vector<int>(n+1, 0));
        sums[0][0] = matrix[0][0];
        for (int j = 1; j <= n; ++j)
        {
            sums[0][j] = 0;
        }

        for (int i = 1; i <= m; ++i)
        {
            sums[i][0] = 0;
        }

        //
        for (int i = 1; i <= m; ++i)
        {
            for (int j = 1; j <= n; ++j)
            {
                sums[i][j] = sums[i][j - 1] + sums[i - 1][j] - sums[i - 1][j - 1] + matrix[i-1][j-1];
            }//for
        }//for      
    }

    int sumRegion(int row1, int col1, int row2, int col2) {
        //求得二维矩阵的行列
        int m = sums.size(), n = sums[0].size();
        if (row1 < 0 || row1 >= m || col1 < 0 || col1 >= n || row2<0 || row2 >= m ||
            col2<0 || col2 >= n || row1 >row2 || col1 > col2)
        {
            return 0;
        }

        return sums[row2+1][col2+1] - sums[row2+1][col1] - sums[row1][col2+1] + sums[row1][col1];
    }

private:
    vector<vector<int>> sums;
};

GitHub测试程序源码

posted on 2015-12-04 14:22  Coding菌  阅读(131)  评论(0编辑  收藏  举报