Fork me on Gitee

分库分表

分库分表

什么是ShardingSphere

Apache ShardingSphere是一款分布式的数据库生态系统。可以将任意数据库转换为分布式数据库,并通过数据分片、弹性伸缩、加密等能力对原有数据库进行增强。

详细见官网详解

什么是ShardingSphere-JDBC

ShardingSphere-JDBC定位为轻量级Java框架,在Java的JDBC层提供的额外服务。

产品功能

特性 定义
数据分片 数据分片,是应对海量数据存储于计算的有效手段,可水平扩展计算和存储
分布式事务 事务能力,是保证数据库完整。安全的关键技术
读写分离 应对高压力业务访问的手段
数据加密 保证数据安全的基本手段
数据迁移 打通数据生态的关键能力。
.... ....

产品优势

  • 极致性能
  • 生态兼容
  • 业务零侵入
  • 运维低成本
  • 安全稳定
  • ...

ShardingSphere与SpringBoot 集成

  • 引入Maven依赖
<dependency>
    <groupId>org.apache.shardingsphere</groupId>
    <artifactId>shardingsphere-jdbc-core-spring-boot-starter</artifactId>
    <version>5.2.1</version>
</dependency>

创建distribute_db.t_order_0和distribute_db.t_order_1

CREATE TABLE `t_order_0` (
  `id` bigint NOT NULL AUTO_INCREMENT,
  `user_id` int NOT NULL,
  `status` int DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=2 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci COMMENT='订单表'

CREATE TABLE `t_order_1` (
  `id` bigint NOT NULL AUTO_INCREMENT,
  `user_id` int NOT NULL,
  `status` int DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=2 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci COMMENT='订单表'

策略配置

分表策略

spring:
  shardingsphere:
    # 定义数据源名称ds0
    datasource:
      names: ds0
      ds0:
        type: com.zaxxer.hikari.HikariDataSource
        driverClassName: com.mysql.cj.jdbc.Driver
        jdbcUrl: jdbc:mysql://localhost:3306/distribute_db
        username: root
        password: 123456
    # 定义规则
    rules:
      sharding:
        # 数据分片规则配置
        tables:
          # 逻辑表名称
          t_order:
            # 由数据源名+表明组成(参考inline语法规则):{0..1}表示0~1
            actualDataNodes: ds0.t_order_${0..1}
            # 分表策略
            tableStrategy:
              standard:
                # 分表字段
                shardingColumn: id
                # 分表算法表达式
                shardingAlgorithmName: t_order_inline
            # 分布式id生成策略    
            keyGenerateStrategy:
              column: id
              keyGeneratorName: snowflake
        sharding-algorithms:
          t_order_inline:
            type: inline
            props:
              # 举例,如id%2==0,存储到t_order_0;id%2==1,存储到t_order_1
              algorithm-expression: t_order_${id % 2}
        # 配置分布式主键生成算法,指定为雪花算法
        key-generators:
          snowflake:
            type: SNOWFLAKE
    # 打印sql
    props:
      sql-show: true

验证水平分表

OrderDao

@Mapper
public interface OrderDao {

	@Insert("insert into t_order (user_id, status) values (#{userId}, #{status})")
	void insertOrder(@Param("userId")Integer userId,@Param("status")Integer status);

	@Select("select * from t_order where id = #{id}")
	Map<String,Object> selectOrderById(@Param("id")Long id);
}

测试类

@Test
public void insertOrderOne(){
    orderDao.insertOrder(1,1);
}

如遇报错内容为Cause by:Caused by:java.lang.NoSuchMethodErrarCreate breakpoint :org.apache.shardingsphere,infra.util.yaml.constructor.ShardingSphereYamlConstructor$1.setCodePointLimit(I)V

添加依赖

 <dependency>
    <groupId>org.yaml</groupId>
    <artifactId>snakeyaml</artifactId>
    <version>1.33</version>
</dependency>

再次插入记录,查看输出日志

image-20240411203854137

从日志中,可以看到主键记录为985280812100354048的记录被插入到t_order_0中。

借助for循环插入更多记录

@Test
public void insertOrder() {
    for (int i = 0; i < 10; i++) {
        orderDao.insertOrder(1,1);
    }
}

image-20240411204054947

@Select("select * from t_order where id = #{id}")
Map<String,Object> selectOrderById(@Param("id")Long id);

查看记录插入的记录985282301912940545

@Test
public void testSelectOrder(){
    System.out.println(orderDao.selectOrderById(985282301912940545L));
}

image-20240411205016577

分库策略

水平分表

新建数据库distribute_db2,使用user_id字段取余进行分库判断。user_id % 2==0,存放在distribute_db,否则distribute_db2

创建新的建表语句

create database `distribute_db2`;

use distribute_db2;

CREATE TABLE `t_order_0` (
  `id` bigint NOT NULL AUTO_INCREMENT,
  `user_id` int NOT NULL,
  `status` int DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=985282301912940546 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci COMMENT='订单表';

CREATE TABLE `t_order_1` (
  `id` bigint NOT NULL AUTO_INCREMENT,
  `user_id` int NOT NULL,
  `status` int DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=985282301912940546 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci COMMENT='订单表'

配置规则

spring:
  application:
    name: distribute-db

  shardingsphere:
    datasource:
      names: ds0,ds1
      ds0:
        type: com.zaxxer.hikari.HikariDataSource
        driverClassName: com.mysql.cj.jdbc.Driver
        jdbcUrl: jdbc:mysql://localhost:3306/distribute_db
        username: root
        password: 123456
	  # 添加分库数据源信息
      ds1:
        type: com.zaxxer.hikari.HikariDataSource
        driverClassName: com.mysql.cj.jdbc.Driver
        jdbcUrl: jdbc:mysql://localhost:3306/distribute_db2
        username: root
        password: 123456

    rules:
      sharding:
        tables:
          t_order:
            actualDataNodes: ds${0..1}.t_order_${0..1}
            tableStrategy:
              standard:
                shardingColumn: id
                shardingAlgorithmName: t_order_inline
            # 添加分库策略    
            database-strategy:
              standard:
                shardingColumn: user_id
                shardingAlgorithmName: t_order_user_inline
            keyGenerateStrategy:
              column: id
              keyGeneratorName: snowflake
        sharding-algorithms:
          t_order_inline:
            type: inline
            props:
              algorithm-expression: t_order_${id % 2}
          # 添加分库策略,按照user_id%2区分ds0,ds1    
          t_order_user_inline:
            type: inline
            props:
              algorithm-expression: ds${user_id % 2}
        key-generators:
          snowflake:
            type: SNOWFLAKE
    props:
      sql-show: true
    

批量插入数据

@Test
public void insertOrder() {
    for (int i = 0; i < 10; i++) {
        orderDao.insertOrder(i,1);
    }
}

观察日志信息,可以看到按照user_id和order_id的差异,放入不同数据源中。

image-20240411231946559

  • 根据user_id查询记录
@Select("select * from t_order where user_id =#{userId}")
Map<String,Object> selectOrderByUserId(@Param("userId")Integer userId);
@Test
public void testSelectOrderByUserId(){
    System.out.println(orderDao.selectOrderByUserId(0));
}

根据user_id为0只能定位到在ds_0数据源中,但无法定位实在t_order_0表还是t_order_1表中,因此执行union all连表查询。

image-20240411232233002

  • 如果根据user_id + order_id组合查询
@Select("select * from t_order where id = #{id} and user_id = #{userId}")
Map<String,Object> selectOrderByIdAndUserId(@Param("id")Long orderId,@Param("userId")Integer userId);
@Test
public void testSelectOrderByIdAndUserId(){
    System.out.println(orderDao.selectOrderByIdAndUserId(985318439167983616L,0));
}

根据user_id和order_id可以唯一定位数据源及表信息,因此无连表查询

image-20240411232638297

垂直分库

posted @ 2024-04-11 23:36  shine-rainbow  阅读(12)  评论(0编辑  收藏  举报