卷积神经网络中的Winograd快速卷积算法
博客:blog.shinelee.me | 博客园 | CSDN
写在前面
随便翻一翻流行的推理框架(加速器),如NCNN、NNPACK等,可以看到,对于卷积层,大家不约而同地采用了Winograd快速卷积算法,该算法出自CVPR 2016的一篇 paper:Fast Algorithms for Convolutional Neural Networks。
本文将尝试揭开Winograd算法的神秘面纱。
问题定义
将一维卷积运算定义为,为Output Size,为Filter Size,则输入信号的长度为,卷积运算是对应位置相乘然后求和,输入信号每个位置至少要参与1次乘法,所以乘法数量最少与输入信号长度相同,记为
在行列上分别进行一维卷积运算,可得到二维卷积,记为,输出为,卷积核为,则输入信号为,乘法数量至少为
若是直接按滑动窗口方式计算卷积,一维时需要次乘法,二维时需要次乘法,远大于上面计算的最少乘法次数。
使用Winograd算法计算卷积快在哪里?一言以蔽之:快在减少了乘法的数量,将乘法数量减少至或。
怎么减少的?请看下面的例子。
一个例子 F(2, 3)
先以1维卷积为例,输入信号为,卷积核为,则卷积可写成如下矩阵乘法形式:
如果是一般的矩阵乘法,则需要6次乘法和4次加法,如下:
但是,卷积运算中输入信号转换成的矩阵不是任意矩阵,其中有规律地分布着大量的重复元素,比如第1行和第2行的和,卷积转换成的矩阵乘法比一般矩阵乘法的问题域更小,这就让优化存在了可能。
Winograd是怎么做的呢?
其中,
乍看上去,为了计算,需要的运算次数分别为:
- 输入信号上:4次加法(减法)
卷积核上:3次加法(中间结果可保留),2次乘法(除法)- 输出上:4次乘法,4次加法
在神经网络的推理阶段,卷积核上的元素是固定的,因此上的运算可以提前算好,预测阶段只需计算一次,可以忽略,所以一共所需的运算次数为与上的运算次数之和,即4次乘法和8次加法。
与直接运算的6次乘法和4次加法相比,乘法次数减少,加法次数增加。在计算机中,乘法一般比加法慢,通过减少减法次数,增加少量加法,可以实现加速。
1D winograd
上一节中的计算过程写成矩阵形式如下:
其中,为element-wise multiplication(Hadamard product)对应位置相乘,
- :卷积核
- :输入信号
- :Filter transform矩阵,尺寸
- :Input transform矩阵,尺寸
- :Output transform矩阵,尺寸
整个计算过程在逻辑上可以分为4步:
- Input transform
- Filter transform
- Hadamar product
- Output transform
注意,这里写成矩阵形式,并不意味着实现时要调用矩阵运算的接口,一般直接手写计算过程速度会更快,写成矩阵只是为了数学形式。
1D to 2D,F(2, 3) to F(2x2, 3x3)
上面只是看了1D的一个例子,2D怎么做呢?
论文中一句话带过:
A minimal 1D algorithm F(m, r) is nested with itself to obtain a minimal 2D algorithm,F(m×m, r×r).
其中,为 Filter,为的image tile。
问题是:怎么nested with itself?
这里继续上面的例子,扩展到2D,,先写成矩阵乘法,见下图,图片来自SlideShare,注意数学符号的变化,
将卷积核的元素拉成一列,将输入信号每个滑动窗口中的元素拉成一行。注意图中红线划分成的分块矩阵,每个子矩阵中重复元素的位置与一维时相同,同时重复的子矩阵也和一维时相同,如下所示
令,即窗口中的第0行元素,表示第1、2、3行;,
卷积运算为对应位置相乘再相加,上式中,为列向量与的卷积,结果为长度为2的列向量,而方括号内对应位置相乘再相加,相当于在构成的行向量上卷积,据此,上面的推导就不难看出了。
卷积运算为对应位置相乘再相加,上式中,表示长度为4的与长度为3的卷积结果,结果为长度为2的列向量,其中,和均为长度为4的列向量,进一步地,可以看成3对长度为4的列向量两两对应位置相乘再相加,结果为长度为4的列向量,也可以看成是4组长度为3的行向量的点积运算,同样,也是4组长度为3的行向量的内积运算,考虑两者的重叠部分和,恰好相当于的每一行在的对应行上进行1维卷积,上面我们已经进行了列向量卷积的Winograd推导,行向量的卷积只需将所有左乘的变换矩阵转置后变成右乘就可以了,至此,上面的推导结果就不难得出了。
所谓的nested with itself如下图所示,
此时,Winograd算法的乘法次数为16(上图),而直接卷积的乘法次数为36,降低了2.25倍的乘法计算复杂度。
卷积神经网络中的Winograd
要将Winograd应用在卷积神经网络中,还需要回答下面两个问题:
- 上面我们仅仅是针对一个小的image tile,但是在卷积神经网络中,feature map的尺寸可能很大,难道我们要实现吗?
- 在卷积神经网络中,feature map是3维的,卷积核也是3维的,3D的winograd该怎么做?
第一个问题,在实践中,会将input feature map切分成一个个等大小有重叠的tile,在每个tile上面进行winograd卷积。
第二个问题,3维卷积,相当于逐层做2维卷积,然后将每层对应位置的结果相加,下面我们会看到多个卷积核时更巧妙的做法。
- Input transform
- Filter transform
- Batched-GEMM(批量矩阵乘法)
- Output transform
算法流程可视化如下,图片出自论文Sparse Winograd Convolutional neural networks on small-scale systolic arrays,与算法对应着仔细推敲还是挺直观的。
注意图中的Matrix Multiplication,对应3维卷积中逐channel卷积后的对应位置求和,相当于个矩阵乘积,参与乘积的矩阵尺寸分别为和,把Channel那一维消掉。
总结
- Winograd算法通过减少乘法次数来实现提速,但是加法的数量会相应增加,同时需要额外的transform计算以及存储transform矩阵,随着卷积核和tile的尺寸增大,就需要考虑加法、transform和存储的代价,而且tile越大,transform矩阵越大,计算精度的损失会进一步增加,所以一般Winograd只适用于较小的卷积核和tile(对大尺寸的卷积核,可使用FFT加速),在目前流行的网络中,小尺寸卷积核是主流,典型实现如、、等,可参见NCNN、FeatherCNN、ARM-ComputeLibrary等源码实现。
- 就卷积而言,Winograd算法和FFT类似,都是先通过线性变换将input和filter映射到新的空间,在那个空间里简单运算后,再映射回原空间。
- 与im2col+GEMM+col2im相比,winograd在划分时使用了更大的tile,就划分方式而言,与im2col相同。
参考
- arxiv: Fast Algorithms for Convolutional Neural Networks
- video: Fast Algorithms for Convolutional Neural Networks by Andrew Lavin and Scott Gray
- video: Even Faster CNNs Exploring the New Class of Winograd Algorithms
- arxiv: Sparse Winograd Convolutional neural networks on small-scale systolic arrays
- ARM-software/ComputeLibrary
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· AI编程工具终极对决:字节Trae VS Cursor,谁才是开发者新宠?
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!