im2col:将卷积运算转为矩阵相乘

博客:blog.shinelee.me | 博客园 | CSDN

im2col实现

如何将卷积运算转为矩阵相乘?直接看下面这张图,以下图片来自论文High Performance Convolutional Neural Networks for Document Processing

im2col
上图为3D卷积的传统计算方式与矩阵乘法计算方式的对比,传统卷积运算是将卷积核以滑动窗口的方式在输入图上滑动,当前窗口内对应元素相乘然后求和得到结果,一个窗口一个结果。相乘然后求和恰好也是向量内积的计算方式,所以可以将每个窗口内的元素拉成向量,通过向量内积进行运算,多个窗口的向量放在一起就成了矩阵,每个卷积核也拉成向量,多个卷积核的向量排在一起也成了矩阵,于是,卷积运算转化成了矩阵运算。

下图为转化后的矩阵尺寸,padding为0:
EmzaRO.png
代码上怎么实现呢?这里参看一下SeetaFaceEngine/FaceIdentification/src/conv_net.cpp 中的代码,与上面的图片对照着看比较直观。

int dst_h = (src_h - kernel_h) / stride_h_ + 1; // int src_h = input->height(); int kernel_h = weight->height();
int dst_w = (src_w - kernel_w) / stride_w_ + 1; // int src_w = input->width(); int kernel_w = weight->width();
int end_h = src_h - kernel_h + 1;
int end_w = src_w - kernel_w + 1;
int dst_size = dst_h * dst_w;
int kernel_size = src_channels * kernel_h * kernel_w;

const int src_num_offset = src_channels * src_h * src_w; // int src_channels = input->channels();
float* const dst_head = new float[src_num * dst_size * dst_channels];
float* const mat_head = new float[dst_size * kernel_size];

const float* src_data = input->data().get();
float* dst_data = dst_head;
int didx = 0;

for (int sn = 0; sn < src_num; ++sn) {
  float* mat_data = mat_head;
  for (int sh = 0; sh < end_h; sh += stride_h_) {
    for (int sw = 0; sw < end_w; sw += stride_w_) {
      for (int sc = 0; sc < src_channels; ++sc) {
        int src_off = (sc * src_h + sh) * src_w + sw;
        for (int hidx = 0; hidx < kernel_h; ++hidx) {
          memcpy(mat_data, src_data + src_off,
                  sizeof(float) * kernel_w);
          mat_data += kernel_w;
          src_off += src_w;
        }
      } // for sc
    } // for sw
  } // for sh
  src_data += src_num_offset;

  const float* weight_head = weight->data().get();
  // int dst_channels = weight->num();
  matrix_procuct(mat_head, weight_head, dst_data, dst_size, dst_channels, 
    kernel_size, true, false);
    
  dst_data += dst_channels * dst_size;
} // for sn

src_num 个输入,每个尺寸为 src_channels * src_h * src_w,卷积核尺寸为kernel_size = src_channels * kernel_h * kernel_w,将每个输入转化为二维矩阵,尺寸为(dst_h * dst_w) * (kernel_size),可以看到最内层循环在逐行拷贝当前窗口内的元素,窗口大小与卷积核大小相同,一次拷贝kernel_w个元素,一个窗口内要拷贝src_channels*kernel_h次,因此一个窗口共拷贝了kernel_size个元素,共拷贝dst_h * dst_w个窗口,因此输入对应的二维矩阵尺寸为(dst_h * dst_w) * (kernel_size)。对于卷积核,有dst_channels= weight->num();个卷积核,因为是行有先存储,卷积核对应的二维矩阵尺寸为dst_channels*(kernel_size)逻辑上虽然为矩阵乘法,实现时两个矩阵逐行内积即可

优缺点分析

将卷积运算转化为矩阵乘法,从乘法和加法的运算次数上看,两者没什么差别,但是转化成矩阵后,运算时需要的数据被存在连续的内存上,这样访问速度大大提升(cache),同时,矩阵乘法有很多库提供了高效的实现方法,像BLAS、MKL等,转化成矩阵运算后可以通过这些库进行加速。

缺点呢?这是一种空间换时间的方法,消耗了更多的内存——转化的过程中数据被冗余存储。

参考

posted @ 2019-04-26 18:04  shine-lee  阅读(14152)  评论(0编辑  收藏  举报