优化之Joiner组件
Joiner组件在运行时需要额外的内存空间处理中间结果,因此会影响性能
可通过查看Joiner performance计数器来决定Joiner组件是否需要优化
通过如下方式优化Joiner组件
将Master Source指定为具有较少重复键值的Source
以Joiner组件的join条件作为group key对数据进行分组,去重后的数据可以作为唯一键值
当Integration Service处理排序后的joiner转换时,它会每次缓存符合100个键的行
如果Master Source包含多个具有相同键值的行,Integration Service必须缓存更多的行,并且性能可能会降低
比如,join条件是Master.id=Detail.id and Master.name=Detail.name, 则连接条件是id,name
然后Integration Service会执行select id,name from Master group by id, name,其结果集就是唯一键值对的结果集
Integration Service每次会从上述结果集中选出100个(id,name)对,并将符合该100个(id,name)对的记录写入缓存
如果Master中符合这100个(id,name)对的记录有越多,则写入缓存的数据量就越大,则性能就会越慢
将Master Source指定为行数较少的源
在session运行时,Joiner组件将Detail Source的每一行与Master Source进行比较
Master Source的行数越少,连接比较的迭代次数就越少,性能就越好
同理,Detail Source的行数越少,每次迭代时遍历的次数也越少
尽可能在数据库端进行join操作
将join操作放在数据库端而不是在session里会提高性能
但有时需要join不同数据源,如平面文件,不同类型数据库,此时需要在session里进行join操作
join的类型同样也会对性能有影响,normal join的性能优于outer join并且返回相对较少的记录数
可通过如下方式在数据库端进行join:
配置pre-session store procedure,在存储过程里进行数据库表的join操作
Source Qualifier的sqlquery里写脚本进行数据库表的join操作
join之前尽可能对input数据排序
如果input数据排过序,则将磁盘读写最小化,因而提高了性能
如果input数据没有排过序,则可将Master Source的记录数尽量减少