CF148D Bag of mice
\(f(i,j)\)表示\(i\)只白鼠,\(j\)只黑鼠\(A\)先手胜的概率
全白先手必胜,有一只黑鼠时,先手若抽到黑鼠则后手必胜,所以先手首回合必抽到白鼠
\(\large f(i,0)=1,f(i,1)=\frac i{i+1}\)
先手抽白鼠,胜\(\large\frac i{i+j}\),先手抽黑鼠,后手白鼠\(0\)
先手抽黑鼠,后手抽黑鼠,跑一只白鼠
\[\frac i{i+j}\times{\frac{j-1}{i+j-1}}\times\frac i{i+j-2}\times f(i-1,j-2)\\
\]
先手抽黑鼠,后手抽黑鼠,跑黑鼠
\[\frac i{i+j}\times\frac{j-1}{i+j-1}\times\frac{j-2}{i+j-2}\times f(i,j-3)
\]
最后
\[f(i,j)=\frac i{i+j}+\frac i{i+j}\times{\frac{j-1}{i+j-1}}\times\frac i{i+j-2}\times f(i-1,j-2)+\frac i{i+j}\times\frac{j-1}{i+j-1}\times\frac{j-2}{i+j-2}\times f(i,j-3)
\]
\(O(wb)\)
double f[N][N]; int n,m;
int main(){
scanf("%d%d",&n,&m);
for(int i = 1;i <= n;++i){
f[i][0] = 1.0;
f[i][1] = 1.0*i/(i+1);
}
if(m == 1 || !m) { printf("%.15f",f[n][m]); return 0; }
for(int i = 1;i <= n;++i)
for(int j = 2;j <= m;++j){
f[i][j] = (1.0*i)/(j+i) + (1.0*j)/(j+i) * (1.0*j-1)/(j+i-1) * (1.0*i)/(j+i-2) * f[i-1][j-2];
if(j^2) f[i][j] += (1.0*j)/(j+i) * (1.0*j-1)/(j+i-1) * (1.0*j-2)/(j+i-2) * f[i][j-3];
}
printf("%.15f",f[n][m]);
}