zeroMQ初体验-3.分而治之模式(push/pull)
http://iyuan.iteye.com/blog/974040
push/pull模式:
模型描述:
1.上游(任务发布)
2.工人(中间,具体工作)
3.下游(信号采集或者工作结果收集)
上游代码:
- import zmq
- import random
- import time
- context = zmq.Context()
- # Socket to send messages on
- sender = context.socket(zmq.PUSH)
- sender.bind("tcp://*:5557")
- print "Press Enter when the workers are ready: "
- _ = raw_input()
- print "Sending tasks to workers..."
- # The first message is "0" and signals start of batch
- sender.send('0')
- # Initialize random number generator
- random.seed()
- # Send 100 tasks
- total_msec = 0
- for task_nbr in range(100):
- # Random workload from 1 to 100 msecs
- workload = random.randint(1, 100)
- total_msec += workload
- sender.send(str(workload))
- print "Total expected cost: %s msec" % total_msec
工作代码:
- import sys
- import time
- import zmq
- context = zmq.Context()
- # Socket to receive messages on
- receiver = context.socket(zmq.PULL)
- receiver.connect("tcp://localhost:5557")
- # Socket to send messages to
- sender = context.socket(zmq.PUSH)
- sender.connect("tcp://localhost:5558")
- # Process tasks forever
- while True:
- s = receiver.recv()
- # Simple progress indicator for the viewer
- sys.stdout.write('.')
- sys.stdout.flush()
- # Do the work
- time.sleep(int(s)*0.001)
- # Send results to sink
- sender.send('')
下游代码:
- import sys
- import time
- import zmq
- context = zmq.Context()
- # Socket to receive messages on
- receiver = context.socket(zmq.PULL)
- receiver.bind("tcp://*:5558")
- # Wait for start of batch
- s = receiver.recv()
- # Start our clock now
- tstart = time.time()
- # Process 100 confirmations
- total_msec = 0
- for task_nbr in range(100):
- s = receiver.recv()
- if task_nbr % 10 == 0:
- sys.stdout.write(':')
- else:
- sys.stdout.write('.')
- # Calculate and report duration of batch
- tend = time.time()
- print "Total elapsed time: %d msec" % ((tend-tstart)*1000)
注意点:
这种模式与pub/sub模式一样都是单向的,区别有两点:
1,该模式下在没有消费者的情况下,发布者的信息是不会消耗的(由发布者进程维护)
2,多个消费者消费的是同一列信息,假设A得到了一条信息,则B将不再得到
这种模式主要针对在消费者能力不够的情况下,提供的多消费者并行消费解决方案(也算是之前的pub/sub模式的那个"堵塞问题"的一个解决策略吧)
由上面的模型图可以看出,这是一个N:N的模式,在1:N的情况下,各消费者并不是平均消费的,而在N:1的情况下,则有所不同,如下图:
这种模式主要关注点在于,可以扩展中间worker,来到达并发的目的。