爬虫高性能相关
高性能相关
如何实现多个任务的同时进行 而且还效率高
串行实现
效率最低最不可取
import requests urls = [ 'http://www.baidu.com/', 'https://www.cnblogs.com/', 'https://www.cnblogs.com/news/', 'https://cn.bing.com/', 'https://stackoverflow.com/', ] for url in urls: response = requests.get(url) print(response)
多线程
多线程存在线程利用率不高的问题
import requests import threading urls = [ 'http://www.baidu.com/', 'https://www.cnblogs.com/', 'https://www.cnblogs.com/news/', 'https://cn.bing.com/', 'https://stackoverflow.com/', ] def task(url): response = requests.get(url) print(response) for url in urls: t = threading.Thread(target=task,args=(url,)) t.start()
协程+IO切换
gevent内部调用greenlet(实现了协程)
基于协程比线程更加省资源
from gevent import monkey; monkey.patch_all() import gevent import requests def func(url): response = requests.get(url) print(response) urls = [ 'http://www.baidu.com/', 'https://www.cnblogs.com/', 'https://www.cnblogs.com/news/', 'https://cn.bing.com/', 'https://stackoverflow.com/', ] spawn_list = [] for url in urls: spawn_list.append(gevent.spawn(func, url)) # 创建协程 gevent.joinall(spawn_list)
事件循环
基于事件循环的异步非阻塞模块:Twisted
from twisted.web.client import getPage, defer from twisted.internet import reactor def stop_loop(arg): reactor.stop() def get_response(contents): print(contents) deferred_list = [] url_list = [ 'http://www.baidu.com/', 'https://www.cnblogs.com/', 'https://www.cnblogs.com/news/', 'https://cn.bing.com/', 'https://stackoverflow.com/', ] for url in url_list: deferred = getPage(bytes(url, encoding='utf8')) # 拿到了要爬取的任务,并没有真正的执行爬虫 deferred.addCallback(get_response) # 要调用的回调函数 deferred_list.append(deferred) # 将所有的任务加入带一个列表里面 dlist = defer.DeferredList(deferred_list) # 检测所有的任务是否都被循环 dlist.addBoth(stop_loop) # 如果列表中的任务都完成了就停止循环,执行停止的函数 reactor.run()
本文来自博客园,作者:羊驼之歌,转载请注明原文链接:https://www.cnblogs.com/shijieli/p/10360799.html