yolov3测试自己的数据
前言
上一篇我已经介绍了利用yolov3预训练权重文件(只包含卷积层)并训练
只需要进行如下编译:
./darknet detector train cfg/voc.data cfg/yolov3.cfg darknet53.conv.74
同时会在backup文件夹下生成对应weights文件(文件会随着时间递增不断的更新),如下所示:
可执行如下代码:
./darknet detector train cfg/voc.data cfg/yolov3.cfg yolov3_1700.weights
这里注意要把yolov3-1700.weights文件放在darknet文件夹下
1.修改参数文件(../darknet/cfg/yolov3.cfg)
2.执行如下命令
./darknet detector test cfg/voc.data cfg/yolov3.cfg backup/yolov3_300.weights -thresh 0.1
说明:1.把权重名字修改;2.YOLOv3默认阈值为0.25,-thresh 0是设置阈值,设为0的话可以显示出所有检测结果;3.运行完直接会让你输入 Enter Image Path:
3. 训练过程参数的意义
Region xx: cfg文件中yolo-layer的索引; Avg IOU:当前迭代中,预测的box与标注的box的平均交并比,越大越好,期望数值为1; Class: 标注物体的分类准确率,越大越好,期望数值为1; obj: 越大越好,期望数值为1; No obj: 越小越好; .5R: 以IOU=0.5为阈值时候的recall; recall = 检出的正样本/实际的正样本 0.75R: 以IOU=0.75为阈值时候的recall; count:正样本数目。
参考博客: