apache flink

apache flink 介绍
1,apache flink 是为分布式,高性能,随时可用以及准确的流处理应用程序打造的开源流处理框架
2,apache flink 是一个框架和分布式处理引擎,用于对有界和无界数据进行状态计算,以内存速度和任意规模来执行计算
批处理与流处理:
1,批处理是从数据仓库读取某一天,某一个月数据进行处理,需要访问全套记录才能完成计算工作,关注高吞吐,高效处理
2,流处理无需对整个数据集进行操作,主要是针对系统传输的每个数据项执行操作,一般用于实时统计,要求低延迟与精确一致保证
3,flink 既可以流处理也可以批处理(当做特殊的流处理)
无界数据流:
1, 无界数据流 只有开始但是没有结束,划分区间进行统计操作
2, 通常要求以特定的顺序(事件发生顺序)获取 event,以便于推断结果完整性
有界数据流:
1,有明确的定义的开始和结束
flink 架构:
1,JobManager(JVM 进程) 处理器:
master(driver), 用于协调分布式执行,调度 task ,协调检查点(失败恢复). flink 运行时至少存在一个 master(可多个,一个 leader 其他standby)
2,TaskManger(JVM 进程) 处理器:
1).work(executor) 用于执行一个 dataflow 的 task(或者特殊的 subtask), 数据缓冲和 data stream, flink 运行至少需要一个 worker
2),TaskManger 会定时向 JobManager 进行心跳汇报
一,standalone 安装
  1,首先在 JobManager 进行解压, 在 flink-conf.yaml 配置jobmanager.rpc.address
################################################################################
#  Licensed to the Apache Software Foundation (ASF) under one
#  or more contributor license agreements.  See the NOTICE file
#  distributed with this work for additional information
#  regarding copyright ownership.  The ASF licenses this file
#  to you under the Apache License, Version 2.0 (the
#  "License"); you may not use this file except in compliance
#  with the License.  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
# limitations under the License.
################################################################################


#==============================================================================
# Common
#==============================================================================

# The external address of the host on which the JobManager runs and can be
# reached by the TaskManagers and any clients which want to connect. This setting
# is only used in Standalone mode and may be overwritten on the JobManager side
# by specifying the --host <hostname> parameter of the bin/jobmanager.sh executable.
# In high availability mode, if you use the bin/start-cluster.sh script and setup
# the conf/masters file, this will be taken care of automatically. Yarn/Mesos
# automatically configure the host name based on the hostname of the node where the
# JobManager runs.

jobmanager.rpc.address: master

# The RPC port where the JobManager is reachable.

jobmanager.rpc.port: 6123


# The heap size for the JobManager JVM

jobmanager.heap.size: 1024m


# The heap size for the TaskManager JVM

taskmanager.heap.size: 1024m


# The number of task slots that each TaskManager offers. Each slot runs one parallel pipeline.

taskmanager.numberOfTaskSlots: 1

# The parallelism used for programs that did not specify and other parallelism.

parallelism.default: 1

# The default file system scheme and authority.
# 
# By default file paths without scheme are interpreted relative to the local
# root file system 'file:///'. Use this to override the default and interpret
# relative paths relative to a different file system,
# for example 'hdfs://mynamenode:12345'
#
# fs.default-scheme

#==============================================================================
# High Availability
#==============================================================================

# The high-availability mode. Possible options are 'NONE' or 'zookeeper'.
#
# high-availability: zookeeper

# The path where metadata for master recovery is persisted. While ZooKeeper stores
# the small ground truth for checkpoint and leader election, this location stores
# the larger objects, like persisted dataflow graphs.
# 
# Must be a durable file system that is accessible from all nodes
# (like HDFS, S3, Ceph, nfs, ...) 
#
# high-availability.storageDir: hdfs:///flink/ha/

# The list of ZooKeeper quorum peers that coordinate the high-availability
# setup. This must be a list of the form:
# "host1:clientPort,host2:clientPort,..." (default clientPort: 2181)
#
# high-availability.zookeeper.quorum: localhost:2181


# ACL options are based on https://zookeeper.apache.org/doc/r3.1.2/zookeeperProgrammers.html#sc_BuiltinACLSchemes
# It can be either "creator" (ZOO_CREATE_ALL_ACL) or "open" (ZOO_OPEN_ACL_UNSAFE)
# The default value is "open" and it can be changed to "creator" if ZK security is enabled
#
# high-availability.zookeeper.client.acl: open

#==============================================================================
# Fault tolerance and checkpointing
#==============================================================================

# The backend that will be used to store operator state checkpoints if
# checkpointing is enabled.
#
# Supported backends are 'jobmanager', 'filesystem', 'rocksdb', or the
# <class-name-of-factory>.
#
# state.backend: filesystem

# Directory for checkpoints filesystem, when using any of the default bundled
# state backends.
#
# state.checkpoints.dir: hdfs://namenode-host:port/flink-checkpoints

# Default target directory for savepoints, optional.
#
# state.savepoints.dir: hdfs://namenode-host:port/flink-checkpoints

# Flag to enable/disable incremental checkpoints for backends that
# support incremental checkpoints (like the RocksDB state backend). 
#
# state.backend.incremental: false

#==============================================================================
# Web Frontend
#==============================================================================

# The address under which the web-based runtime monitor listens.
#
#jobmanager.web.address: 0.0.0.0

# The port under which the web-based runtime monitor listens.
# A value of -1 deactivates the web server.

rest.port: 8081

# Flag to specify whether job submission is enabled from the web-based
# runtime monitor. Uncomment to disable.

#jobmanager.web.submit.enable: false

#==============================================================================
# Advanced
#==============================================================================

# Override the directories for temporary files. If not specified, the
# system-specific Java temporary directory (java.io.tmpdir property) is taken.
#
# For framework setups on Yarn or Mesos, Flink will automatically pick up the
# containers' temp directories without any need for configuration.
#
# Add a delimited list for multiple directories, using the system directory
# delimiter (colon ':' on unix) or a comma, e.g.:
#     /data1/tmp:/data2/tmp:/data3/tmp
#
# Note: Each directory entry is read from and written to by a different I/O
# thread. You can include the same directory multiple times in order to create
# multiple I/O threads against that directory. This is for example relevant for
# high-throughput RAIDs.
#
# io.tmp.dirs: /tmp

# Specify whether TaskManager's managed memory should be allocated when starting
# up (true) or when memory is requested.
#
# We recommend to set this value to 'true' only in setups for pure batch
# processing (DataSet API). Streaming setups currently do not use the TaskManager's
# managed memory: The 'rocksdb' state backend uses RocksDB's own memory management,
# while the 'memory' and 'filesystem' backends explicitly keep data as objects
# to save on serialization cost.
#
# taskmanager.memory.preallocate: false

# The classloading resolve order. Possible values are 'child-first' (Flink's default)
# and 'parent-first' (Java's default).
#
# Child first classloading allows users to use different dependency/library
# versions in their application than those in the classpath. Switching back
# to 'parent-first' may help with debugging dependency issues.
#
# classloader.resolve-order: child-first

# The amount of memory going to the network stack. These numbers usually need 
# no tuning. Adjusting them may be necessary in case of an "Insufficient number
# of network buffers" error. The default min is 64MB, teh default max is 1GB.
# 
# taskmanager.network.memory.fraction: 0.1
# taskmanager.network.memory.min: 67108864
# taskmanager.network.memory.max: 1073741824

#==============================================================================
# Flink Cluster Security Configuration
#==============================================================================

# Kerberos authentication for various components - Hadoop, ZooKeeper, and connectors -
# may be enabled in four steps:
# 1. configure the local krb5.conf file
# 2. provide Kerberos credentials (either a keytab or a ticket cache w/ kinit)
# 3. make the credentials available to various JAAS login contexts
# 4. configure the connector to use JAAS/SASL

# The below configure how Kerberos credentials are provided. A keytab will be used instead of
# a ticket cache if the keytab path and principal are set.

# security.kerberos.login.use-ticket-cache: true
# security.kerberos.login.keytab: /path/to/kerberos/keytab
# security.kerberos.login.principal: flink-user

# The configuration below defines which JAAS login contexts

# security.kerberos.login.contexts: Client,KafkaClient

#==============================================================================
# ZK Security Configuration
#==============================================================================

# Below configurations are applicable if ZK ensemble is configured for security

# Override below configuration to provide custom ZK service name if configured
# zookeeper.sasl.service-name: zookeeper

# The configuration below must match one of the values set in "security.kerberos.login.contexts"
# zookeeper.sasl.login-context-name: Client

#==============================================================================
# HistoryServer
#==============================================================================

# The HistoryServer is started and stopped via bin/historyserver.sh (start|stop)

# Directory to upload completed jobs to. Add this directory to the list of
# monitored directories of the HistoryServer as well (see below).
#jobmanager.archive.fs.dir: hdfs:///completed-jobs/

# The address under which the web-based HistoryServer listens.
#historyserver.web.address: 0.0.0.0

# The port under which the web-based HistoryServer listens.
#historyserver.web.port: 8082

# Comma separated list of directories to monitor for completed jobs.
#historyserver.archive.fs.dir: hdfs:///completed-jobs/

# Interval in milliseconds for refreshing the monitored directories.
#historyserver.archive.fs.refresh-interval: 10000
View Code
  2,配置 slaves(只配置 TaskManger)
slave1
slave2
  3,在 flink JobManager 启动集群
#StandaloneSessionClusterEntrypoint 进程与 TaskManagerRunner 进程启动
bin/start-cluster.sh
    4,打开 UI 界面 IP:8081,并分发

二,yarn 模式安装(前四步同上)
5,开启hdfs 与 yarn
    sbin/start-all.sh
  6,在 JobManager 提交 yarn-session
    bin/yarn-session.sh -n 2 -s 6 -jm 1024 -tm 1024 -nm test -d
    '''
    -n 指的是 TaskManager 数量
    -s 值得是 一个 TaskManager 的 slots(task) 数量, slots 平均分配内存
    -jm JobManager 内存(MB)
    -tm 每个TaskManager 内存(MB)
    -nm yarn 的 appName
    -d 后台运行
    '''
  7,提交 jar 包到 集群
   bin/flink run -m yarn-cluster examples/batch/WordCount.jar

 

posted @ 2019-07-16 00:07  十七楼的羊  阅读(240)  评论(0编辑  收藏  举报