spark sql 技术说明与常见的操作(其二)

Parquet 支持元数据合并:
1,主要是针对多个 Parquet文件,并且有着可以互相兼容进行合并
2,开启自动合并的两种方式:
1),读取 Parquet文件时将数据源选项 mergeSchema 设置为true
2),使用 SQLContext.setConf() 将 spark.sql.parquet.mergeSchema设置为 true
package day02
import org.apache.spark.sql.SQLContext
import org.apache.spark.{SparkConf, SparkContext}
object Merge {
    def main(args: Array[String]): Unit = {
      val conf = new SparkConf()
        .setAppName("Mero").setMaster("local[*]")
      val sc = new SparkContext(conf)
      val sqlContext = new SQLContext(sc)
      // 隐式转换
      import sqlContext.implicits._
      val studentsWithNameAge = Array(("JIEK",19),("TOM",34))
      val studentsWithNameAgeDF =
        sc.parallelize(studentsWithNameAge,2).
          toDF("name","age")
      // 写入到一个 parquet文件之中
      studentsWithNameAgeDF.write.
        mode(saveMode = "append").format("parquet")
        .save("hdfs://master:9000/students")
      val studentsWithNameGrade= Array(("MERRAY","A"),("MATH","B"))
      val studentsWithNameGradeDf =
        sc.parallelize(studentsWithNameGrade,2).
          toDF("name","grade")
      // 写入到一个 parquet文件之中
      studentsWithNameGradeDf.write.
        mode(saveMode = "append").format("parquet")
        .save("hdfs://master:9000/students")

      //第一个 DataFrame 之中的元数据(name,age)与 第二个元数据(name,grade)是不一样的
      // 进行元数据合并
      val students =sqlContext.read.option("mergeSchema","true")
        .parquet("hdfs://master:9000/students")
      students.show()
      students.printSchema()
      /*
     +------+----+-----+
    |  name| age|grade|
    +------+----+-----+
    |MERRAY|null|    A|
    |  JIEK|  19| null|
    |  MATH|null|    B|
    |   TOM|  34| null|
    +------+----+-----+
    root
     |-- name: string (nullable = true)
     |-- age: integer (nullable = true)
     |-- grade: string (nullable = true)
      * */
  }}
sparksql 操作hive
saveAsTable与 registerTempTable的区别
1,spark 允许将数据保存到 Hive 表中,使用 saveAsTable 将DataFrame数据保存到Hive表之中,saveAsTable 不仅创建元数据,还会数据物理化到Hive表之中
2,registerTempTable 会创建一张临时表,没有物理化操作.spark Applation 重新启动就会丢失
2, 需要将 hive-site.xml 拷贝到 spark/conf 下,mysql-connect 拷贝到 spark/jars 之中
package day02
import org.apache.spark.sql.SaveMode
import org.apache.spark.sql.hive.HiveContext
import org.apache.spark.{SparkConf, SparkContext}
object hiveSparkSql {
  def main(args: Array[String]): Unit = {
      val conf = new SparkConf().setAppName("hive-sql")
        .setMaster("local[*]")
      val sc = new SparkContext(conf)
      // 以 SparkContext 为参数
      val hiveContext = new HiveContext(sc)
      hiveContext.sql(
        "drop table if exists student_infos")
      hiveContext.sql("create table if not " +
        "exists student_infos(name string ,age int) row format delimited fields terminated by '\\t'")
      hiveContext.sql("" +
        "load data local inpath '/home/hadoop/" +
        "student_infos.txt' into table student_infos")
      hiveContext.sql("" +
        "drop table if exists student_scores")
      hiveContext.sql("" +
        "create table if not exists student_scores(name string,score int) " +
        "row format delimited fields terminated by '\\t'")
      hiveContext.sql("" +
        "load data local inpath '/home/hadoop/" +
        "student_scores.txt' into table student_scores")
      // 关联两张表
      val goodStudentDf = hiveContext.sql("select " +
        "si.name,si.age,ss.score from student_infos si join " +
        "student_scores ss on si.name==ss.name where ss.score" +
        ">=80")
      hiveContext.sql("drop table if exists good_student_infos")
      goodStudentDf.write.mode(SaveMode.Overwrite).saveAsTable("good_student_infos")
      val goodStudents = hiveContext.table("good_student_infos"
      ).collect()
      val goodstudentsRows = hiveContext.table("" +
        "good_student_infos").collect()
      for(goodstudentsRow<-goodstudentsRows){
        println(goodstudentsRow)
      }}}
使用 scala 操作 jdbc 的几种方式
package Day3
import java.util.Properties
import org.apache.spark.sql.SQLContext
import org.apache.spark.{SparkConf, SparkContext}
object Jdbc {
  def main(args: Array[String]): Unit = {
      val conf = new SparkConf().setMaster("local[4]").setAppName("JDBC")
      val sc = new SparkContext(conf)
      val sqlContext = new SQLContext(sc)

      val lowerBound = 1  // 上界
      val upperBound = 100000  //下界
      val numPartitions = 5   // 分区数量
      val url = "jdbc:mysql://localhost:3306/my_db?user=root&password=x"
      val prop = new Properties()
      // 使用 Properties(相关属性)
      // 设定分区上下限以及 rdd 个数,数据很大不适合
      val df = sqlContext.read.jdbc(
        url, "student_info","name",
        lowerBound, upperBound, numPartitions, prop)

      val predicates = Array[String]("age <19") // 可以指定 查询限制
      val df1 = sqlContext.read.jdbc(url, "student_info", predicates, prop)

      // 使用 load 来进行数据加载, load 还支持 json、orc
      // 其实 options 与上面 jdbc 是一样的方法
      // dbtable 指定表
      val df2 = sqlContext.read.format("jdbc").options(
        Map("url" -> "jdbc:mysql://localhost:3306/my_db?user=root&password=x",
          "dbtable" -> "student_info")).load()

      for (a <- df)  println(a)
      /*
      [Len,18] [Jieaak,14] [Qang,57]
      * */
      for (a <- df1)  println(a)
      /*
      [Len,18] [Jieaak,14]
      * */
      for (a <- df2)  println(a)
    /*
    [Len,18] [Jieaak,14] [Qang,57]
    * */}}

 

posted @ 2019-04-14 12:06  十七楼的羊  阅读(536)  评论(0编辑  收藏  举报