Python数据分析初始(一)
基础库
pandas:python的一个数据分析库(pip install pandas)
- pandas 是基于 NumPy 的一个 python 数据分析包,主要目的是为了 数据分析 。它提供了大量高级的 数据结构 和 对数据处理 的方法。
seaborn:数据可视化 (pip install seaborn)
- Seaborn其实是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,在大多数情况下使用seaborn就能做出很具有吸引力的图,而使用matplotlib就能制作具有更多特色的图。应该把Seaborn视为matplotlib的补充,而不是替代物。
scipy:数值计算库(pip install scipy)
- SciPy (pronounced "Sigh Pie") 是一个开源的数学、科学和工程计算包。它是一款方便、易于使用、专为科学和工程设计的Python工具包,包括统计、优化、整合、线性代数模块、傅里叶变换、信号和图像处理、常微分方程求解器等等。
matplotlib:数据可视化 (pip install matplotlib)
- Matplotlib是一个Python的图形框架,类似于MATLAB和R语言。它是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地进行制图。而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中。
sklearn:建模,科学计算库(pip install scikit-learn)
- Scikit-Learn是基于python的机器学习模块,基于BSD开源许可。Scikit-learn的基本功能主要被分为六个部分,分类,回归,聚类,数据降维,模型选择,数据预处理。
numpy:科学运算库(pip install numpy)
- NumPy(Numeric Python)系统是Python的一种开源的数值计算扩展,一个用python实现的科学计算包。它提供了许多高级的数值编程工具,如:矩阵数据类型、矢量处理,以及精密的运算库。专为进行严格的数字处理而产生。内容包括:1、一个强大的N维数组对象Array;2、比较成熟的(广播)函数库;3、用于整合C/C++和Fortran代码的工具包;4、实用的线性代数、傅里叶变换和随机数生成函数。numpy和稀疏矩阵运算包scipy配合使用更加方便。
Windows环境可以到 http://www.lfd.uci.edu/~gohlke/pythonlibs/ 下载安装
工具
ipython notebooks:Python做教学、计算、科研的一个重要工具
pip install ipython pip install "ipython[notebook]"
访问命令:ipython notebook
Anaconda
它是python科学计算的一个分发版。
官方下载地址:https://www.continuum.io/downloads
清华镜像:https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/
pycharm配置: https://docs.continuum.io/anaconda/ide_integration#pycharm
- 设置国内镜像
# 添加Anaconda的TUNA镜像 conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ # TUNA的help中镜像地址加有引号,需要去掉 # 设置搜索时显示通道地址 conda config --set show_channel_urls yes
- Conda的环境管理
# 创建一个名为python36的环境,指定Python版本是3.6(conda会为我们自动寻找3.6.x中的最新版本) conda create --name python36 python=3.6 # 安装好后,使用activate激活某个环境 activate python36 # for Windows source activate python36 # for Linux & Mac # 激活后,会发现terminal输入的地方多了python36的字样,实际上,此时系统做的事情就是把默认2.7环境从PATH中去除,再把3.6对应的命令加入PATH # 此时,再次输入 python --version #即系统已经切换到了3.6的环境 # 如果想返回默认的python 2.7环境,运行 deactivate python36 # for Windows source deactivate python36 # for Linux & Mac # 删除一个已有的环境 conda remove --name python36 --all
- Conda的包管理
# 安装scipy conda install scipy # conda会从从远程搜索scipy的相关信息和依赖项目,对于python 3.6,conda会同时安装numpy和mkl(运算加速的库) # 查看已经安装的packages conda list # 最新版的conda是从site-packages文件夹中搜索已经安装的包,不依赖于pip,因此可以显示出通过各种方式安装的包 # 查看某个指定环境的已安装包 conda list -n python36 # 查找package信息 conda search numpy # 安装package conda install -n python36 numpy # 如果不用-n指定环境名称,则被安装在当前活跃环境 # 也可以通过-c指定通过某个channel安装 # 更新package conda update -n python36 numpy # 删除package conda remove -n python36 numpy
# 更新conda,保持conda最新 conda update conda # 更新anaconda conda update anaconda # 更新python conda update python # 假设当前环境是python 3.6, conda会将python升级为3.6.x系列的当前最新版本
# 在当前环境下安装anaconda包集合 conda install anaconda # 结合创建环境的命令,以上操作可以合并为 conda create -n python36 python=3.6 anaconda # 也可以不用全部安装,根据需求安装自己需要的package即可
四分位数
四分位数(Quartile),即统计学中,把所有数值由小到大排列并分成四等份,处于三个分割点位置的数值就是四分位数。
示例:
首先确定四分位数的位置:(n表示项数)
- Q1的位置= (n+1) × 0.25
- Q2的位置= (n+1) × 0.5
- Q3的位置= (n+1) × 0.75
对于四分位数的确定,有不同的方法,另外一种方法基于N-1 基础。即
- Q1的位置=1+(n-1)x 0.25
- Q2的位置=1+(n-1)x 0.5
- Q3的位置=1+(n-1)x 0.75
Excel 中有两个四分位数的函数。QUARTILE.EXC 和QUARTILE.INC
偏度
偏度(skewness),是统计数据分布偏斜方向和程度的度量,是统计数据分布非对称程度的数字特征。
具体百度百科了解下 http://baike.baidu.com/item/%E5%81%8F%E5%BA%A6/8626571?fr=aladdin