hashheap python 实现
class Node(object): """ the type of class stored in the hashmap, in case there are many same heights in the heap, maintain the number """ def __init__(self, id, num): self.id = id #id means its id in heap array self.num = num #number of same value in this id 处理重复元素 class HashHeap(object): def __init__(self, mode): self.heap = [] self.mode = mode self.size = 0 self.hash = {} def top(self): return self.heap[0] if len(self.heap) > 0 else 0 def isempty(self): return len(self.heap) == 0 def _comparesmall(self, a, b): #compare function in different mode if a <= b: if self.mode == 'min': return True else: return False else: if self.mode == 'min': return False else: return True def _swap(self, idA, idB): #swap two values in heap, we also need to change valA = self.heap[idA] valB = self.heap[idB] numA = self.hash[valA].num numB = self.hash[valB].num self.hash[valB] = Node(idA, numB) self.hash[valA] = Node(idB, numA) self.heap[idA], self.heap[idB] = self.heap[idB], self.heap[idA] def add(self, now): #the key, height in this place self.size += 1 if self.hash.get(now): hashnow = self.hash[now] self.hash[now] = Node(hashnow.id, hashnow.num + 1) else: self.heap.append(now) self.hash[now] = Node(len(self.heap) - 1,1) self._siftup(len(self.heap) - 1) def delete(self, now): self.size -= 1 hashnow = self.hash[now] id = hashnow.id num = hashnow.num if num == 1: self._swap(id, len(self.heap)-1) #like the common delete operation self.hash.pop(now) self.heap.pop() if len(self.heap) > id: self._siftup(id) self._siftdown(id) else: self.hash[now] = Node(id, num - 1) def parent(self, id): if id == 0: return -1 return (id - 1) / 2 def _siftup(self,id): while abs(id -1)/2 < id : #iterative version parentId = (id - 1)/2 #这里非常tricky. if self._comparesmall(self.heap[parentId],self.heap[id]): break else: self._swap(id, parentId) id = parentId def _siftdown(self, id): #iterative version while 2*id + 1 < len(self.heap): l = 2*id + 1 r = l + 1 small = id if self._comparesmall(self.heap[l], self.heap[id]): small = l if r < len(self.heap) and self._comparesmall(self.heap[r], self.heap[small]): small = r if small != id: self._swap(id, small) else: break id = small
这个hashheap的实现可以既可以是最大堆,也可以是最小堆,同时因为hash表中存的value是在heap数组中的index和这个key值的数目,所以可以处理重复数字.关键在于siftup和siftdown的非递归实现.siftdown相当于heapify,但是之前只使用过递归版本.
posted on 2016-07-08 11:53 Sheryl Wang 阅读(948) 评论(0) 编辑 收藏 举报