[Python Cookbook] Pandas: 3 Ways to define a DataFrame
Using Series (Row-Wise)
import pandas as pd purchase_1 = pd.Series({'Name': 'Chris', 'Item Purchased': 'Dog Food', 'Cost': 22.50}) purchase_2 = pd.Series({'Name': 'Kevyn', 'Item Purchased': 'Kitty Litter', 'Cost': 2.50}) purchase_3 = pd.Series({'Name': 'Vinod', 'Item Purchased': 'Bird Seed', 'Cost': 5.00}) df = pd.DataFrame([purchase_1, purchase_2, purchase_3], index=['Store 1', 'Store 1', 'Store 2']) df.head()
Using Series (Column-Wise)
s1 =pd.Series([.25,.5,.75,1],index = ['a','b','c','d'] s2 =pd.Series([.5,.75,1,.25],index = ['a','b','c','d'] df = pd.DataFrame({’s1’:s1,’s2’:s2}) print (df)
Using Dictionary (Columnwise)
data = {'Fruit':['Apple','Pear','Strawberry'], 'Amount':[3,2,5], 'Price':[10,9,8]} df = DataFrame(data) print(df)
Using Nested Dictionary
The outer dictionary is columnwise and the inner dictionary is rowwise.
data = {'Amount':{'Apple':3,'Pear':2,'Strawberry':5}, 'Price':{'Apple':10,'Pear':9,'Strawberry':8}} df = DataFrame(data) print(df)