【medium】4. Median of Two Sorted Arrays 两个有序数组中第k小的数
There are two sorted arrays nums1 and nums2 of size m and n respectively.
Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).
You may assume nums1 and nums2 cannot be both empty.
Example 1:
nums1 = [1, 3] nums2 = [2] The median is 2.0
Example 2:
nums1 = [1, 2] nums2 = [3, 4] The median is (2 + 3)/2 = 2.5
class Solution { public: /* 对于一个长度为n的已排序数列a,若n为奇数,中位数为第(n/2+1)个数 , 若n为偶数,则中位数=[第(n/2)个数 + 第(n/2+1)个数] / 2 如果我们可以在两个数列中求出第K小的元素,便可以解决该问题 不妨设数列A元素个数为n,数列B元素个数为m,各自升序排序,求第k小元素 取A[k / 2] B[k / 2] 比较, 如果 A[k / 2] > B[k / 2] 那么,所求的元素必然不在B的前k / 2个元素中(证明反证法) 反之,必然不在A的前k / 2个元素中,于是我们可以将A或B数列的前k / 2元素删去,求剩下两个数列的 k - k / 2小元素,于是得到了数据规模变小的同类问题,递归解决 如果 k / 2 大于某数列个数,所求元素必然不在另一数列的前k / 2个元素中,同上操作就好。 */ double findKth(vector<int>& A, vector<int>& B, int A_st, int B_st, int k) { //经典函数 // 边界情况,任一数列为空 if (A_st >= A.size()) { return B[B_st + k - 1]; } if (B_st >= B.size()) { return A[A_st + k - 1]; } // k等于1时表示取最小值,直接返回min if (k == 1) return min(A[A_st], B[B_st]); int A_key = A_st + k / 2 - 1 >= A.size() ? INT_MAX : A[A_st + k / 2 - 1]; int B_key = B_st + k / 2 - 1 >= B.size() ? INT_MAX : B[B_st + k / 2 - 1]; if (A_key < B_key){ return findKth(A, B, A_st + k / 2, B_st, k - k / 2); } else { return findKth(A, B, A_st, B_st + k / 2, k - k / 2); } } double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) { int sum = nums1.size() + nums2.size(); double ret; if (sum & 1) { ret = findKth(nums1, nums2, 0, 0, sum / 2 + 1); } else { ret = ((findKth(nums1, nums2, 0, 0, sum / 2)) + findKth(nums1, nums2, 0, 0, sum / 2 + 1)) / 2.0; } return ret; } };