[FJOJ2007][bzoj1002]轮状病毒(递推+高精度)
轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的。一个N轮状基由圆环上N个不同的基原子
和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道。如下图所示
N轮状病毒的产生规律是在一个N轮状基中删去若干条边,使得各原子之间有唯一的信息通道,例如共有16个不
同的3轮状病毒,如下图所示
现给定n(N<=100),编程计算有多少个不同的n轮状病毒
Input
第一行有1个正整数n
Output
计算出的不同的n轮状病毒数输出
Sample Input
3
Sample Output
16
这道题我一开始用组合来算然后发现并没有找到什么公式,于是考虑递推,有n个点(不包括核心)的点,有a[n]种情况。那么我们可以想到,在它外面插入一个多余的结点,每种状态都可以有三种连法连接这个新结点,但如果这个状态不包括与新状态相邻的结点,那就不能连接。所以由此推出的多出来的状态是a[n]*3-a[n-1]。我们又想到如果中点连接它,那又多了两种方案,于是得到递推公式a[n]=a[n-1]*3-a[n-2]+2
n<=100,根据我们的递推公式,a[n]大概是3^100,所以必须要写高精度。
那么我就贴代码了,高精度的模板是之前保存在电脑上的不知道哪个巨佬写的。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <algorithm>
using namespace std;
const int MAXN = 1000;
struct bign
{
int len, s[MAXN];
bign ()
{
memset(s, 0, sizeof(s));
len = 1;
}
bign (int num) { *this = num; }
bign (const char *num) { *this = num; }
bign operator = (const int num)
{
char s[MAXN];
sprintf(s, "%d", num);
*this = s;
return *this;
}
bign operator = (const char *num)
{
for(int i = 0; num[i] == '0'; num++) ; //去前导0
len = strlen(num);
for(int i = 0; i < len; i++) s[i] = num[len-i-1] - '0';
return *this;
}
bign operator + (const bign &b) const //+
{
bign c;
c.len = 0;
for(int i = 0, g = 0; g || i < max(len, b.len); i++)
{
int x = g;
if(i < len) x += s[i];
if(i < b.len) x += b.s[i];
c.s[c.len++] = x % 10;
g = x / 10;
}
return c;
}
bign operator += (const bign &b)
{
*this = *this + b;
return *this;
}
void clean()
{
while(len > 1 && !s[len-1]) len--;
}
bign operator * (const bign &b) //*
{
bign c;
c.len = len + b.len;
for(int i = 0; i < len; i++)
{
for(int j = 0; j < b.len; j++)
{
c.s[i+j] += s[i] * b.s[j];
}
}
for(int i = 0; i < c.len; i++)
{
c.s[i+1] += c.s[i]/10;
c.s[i] %= 10;
}
c.clean();
return c;
}
bign operator *= (const bign &b)
{
*this = *this * b;
return *this;
}
bign operator - (const bign &b)
{
bign c;
c.len = 0;
for(int i = 0, g = 0; i < len; i++)
{
int x = s[i] - g;
if(i < b.len) x -= b.s[i];
if(x >= 0) g = 0;
else
{
g = 1;
x += 10;
}
c.s[c.len++] = x;
}
c.clean();
return c;
}
bign operator -= (const bign &b)
{
*this = *this - b;
return *this;
}
bign operator / (const bign &b)
{
bign c, f = 0;
for(int i = len-1; i >= 0; i--)
{
f = f*10;
f.s[0] = s[i];
while(f >= b)
{
f -= b;
c.s[i]++;
}
}
c.len = len;
c.clean();
return c;
}
bign operator /= (const bign &b)
{
*this = *this / b;
return *this;
}
bign operator % (const bign &b)
{
bign r = *this / b;
r = *this - r*b;
return r;
}
bign operator %= (const bign &b)
{
*this = *this % b;
return *this;
}
bool operator < (const bign &b)
{
if(len != b.len) return len < b.len;
for(int i = len-1; i >= 0; i--)
{
if(s[i] != b.s[i]) return s[i] < b.s[i];
}
return false;
}
bool operator > (const bign &b)
{
if(len != b.len) return len > b.len;
for(int i = len-1; i >= 0; i--)
{
if(s[i] != b.s[i]) return s[i] > b.s[i];
}
return false;
}
bool operator == (const bign &b)
{
return !(*this > b) && !(*this < b);
}
bool operator != (const bign &b)
{
return !(*this == b);
}
bool operator <= (const bign &b)
{
return *this < b || *this == b;
}
bool operator >= (const bign &b)
{
return *this > b || *this == b;
}
string str() const
{
string res = "";
for(int i = 0; i < len; i++) res = char(s[i]+'0') + res;
return res;
}
};
istream& operator >> (istream &in, bign &x)
{
string s;
in >> s;
x = s.c_str();
return in;
}
ostream& operator << (ostream &out, const bign &x)
{
out << x.str();
return out;
}
int main()
{
bign a[101];
int n;
cin>>n;
a[1]=1;
a[1].clean();
a[2]=5;
a[2].clean();
for(int i=3;i<=n;i++)
{
a[i]=a[i-1]*3-a[i-2]+2;
}
cout<<a[n];
}