武侠并查集

(0)

并查集详解(超级简单有趣~~)

转载https://blog.csdn.net/qq_43731019/article/details/88956480 最后发布于2019-04-01 20:26:07 阅读数 344 收藏
展开
故事读完,并查集就会了~~~~~

江湖上散落着各式各样的大侠,有上千个之多。他们没有什么正当职业,整天背着剑在外面走来走去,碰到和自己不是一路人的,就免不了要打一架。但大侠们有一个优点就是讲义气,绝对不打自己的朋友。而且他们信奉“朋友的朋友就是我的朋友”,只要是能通过朋友关系串联起来的,不管拐了多少个弯,都认为是自己人。这样一来,江湖上就形成了一个一个的帮派,通过两两之间的朋友关系串联起来。而不在同一个帮派的人,无论如何都无法通过朋友关系连起来,于是就可以放心往死了打。但是两个原本互不相识的人,如何判断是否属于一个朋友圈呢?

我们可以在每个朋友圈内推举出一个比较有名望的人,作为该圈子的代表人物。这样,每个圈子就可以这样命名“中国同胞队”美国同胞队”……两人只要互相对一下自己的队长是不是同一个人,就可以确定敌友关系了。

但是还有问题啊,大侠们只知道自己直接的朋友是谁,很多人压根就不认识队长抓狂要判断自己的队长是谁,只能漫无目的的通过朋友的朋友关系问下去:“你是不是队长?你是不是队长?”这样,想打一架得先问个几十年,饿都饿死了,受不了。这样一来,队长面子上也挂不住了,不仅效率太低,还有可能陷入无限循环中。于是队长下令,重新组队。队内所有人实行分等级制度,形成树状结构,我队长就是根节点,下面分别是二级队员、三级队员。每个人只要记住自己的上级是谁就行了。遇到判断敌友的时候,只要一层层向上问,直到最高层,就可以在短时间内确定队长是谁了。由于我们关心的只是两个人之间是否是一个帮派的,至于他们是如何通过朋友关系相关联的,以及每个圈子内部的结构是怎样的,甚至队长是谁,都不重要了。所以我们可以放任队长随意重新组队,只要不搞错敌友关系就好了。于是,门派产生了。

下面我们来看并查集的实现。 int pre[1000]; 这个数组,记录了每个大侠的上级是谁。大侠们从1或者0开始编号(依据题意而定),pre[15]=3就表示15号大侠的上级是3号大侠。如果一个人的上级就是他自己,那说明他就是掌门人了,查找到此为止。也有孤家寡人自成一派的,比如欧阳锋,那么他的上级就是他自己。每个人都只认自己的上级。比如胡青牛同学只知道自己的上级是杨左使。张无忌是谁?不认识!要想知道自己的掌门是谁,只能一级级查上去。

find这个函数就是找掌门用的,意义再清楚不过了(路径压缩算法先不论,后面再说)。

int unionsearch(int root) //查找根结点
{
	int son, tmp;
	son = root;
	while(root != pre[root]) //我的上级不是掌门
		root = pre[root];
	while(son != root) //我就找他的上级,直到掌门出现
	{
		tmp = pre[son];
		pre[son] = root;
		son = tmp;
	}
	return root; //掌门驾到~~
}

再来看看join函数,就是在两个点之间连一条线,这样一来,原先它们所在的两个板块的所有点就都可以互通了。这在图上很好办,画条线就行了。但我们现在是用并查集来描述武林中的状况的,一共只有一个pre[]数组,该如何实现呢? 还是举江湖的例子,假设现在武林中的形势如图所示。虚竹帅锅与周芷若MM是我非常喜欢的两个人物,他们的终极boss分别是玄慈方丈和灭绝师太,那明显就是两个阵营了。我不希望他们互相打架,就对他俩说:“你们两位拉拉勾,做好朋友吧。”他们看在我的面子上,同意了。这一同意可非同小可,整个少林和峨眉派的人就不能打架了。这么重大的变化,可如何实现呀,要改动多少地方?其实非常简单,我对玄慈方丈说:“大师,麻烦你把你的上级改为灭绝师太吧。这样一来,两派原先的所有人员的终极boss都是师太,那还打个球啊!大笑反正我们关心的只是连通性,门派内部的结构不要紧的。”玄慈一听肯定火大了:“我靠,凭什么是我变成她手下呀,怎么不反过来?我抗议!”于是,两人相约一战,杀的是天昏地暗,风云为之变色啊,但是啊,这场战争终究会有胜负,胜者为王。弱者就被吞并了。反正谁加入谁效果是一样的,门派就由两个变成一个了。这段函数的意思明白了吧?

void join(int root1, int root2) //虚竹和周芷若做朋友
{
	int x, y;
	x = unionsearch(root1);//我老大是玄慈
	y = unionsearch(root2);//我老大是灭绝
	if(x != y) 
		pre[x] = y; //打一仗,谁赢就当对方老大
}

再来看看路径压缩算法。建立门派的过程是用join函数两个人两个人地连接起来的,谁当谁的手下完全随机。最后的树状结构会变成什么样,我也无法预知,一字长蛇阵也有可能。这样查找的效率就会比较低下。最理想的情况就是所有人的直接上级都是掌门,一共就两级结构,只要找一次就找到掌门了。哪怕不能完全做到,也最好尽量接近。这样就产生了路径压缩算法。

设想这样一个场景:两个互不相识的大侠碰面了,想知道能不能干一场。 于是赶紧打电话问自己的上级:“你是不是掌门?” 上级说:“我不是呀,我的上级是谁谁谁,你问问他看看。” 一路问下去,原来两人的最终boss都是东厂曹公公。 “哎呀呀,原来是自己人,有礼有礼,在下三营六组白面葫芦娃!” “幸会幸会,在下九营十八组仙子狗尾巴花!” 两人高高兴兴地手拉手喝酒去了。 “等等等等,两位大侠请留步,还有事情没完成呢!”我叫住他俩。 “哦,对了,还要做路径压缩。”两人醒悟。 白面葫芦娃打电话给他的上级六组长:“组长啊,我查过了,其实偶们的掌门是曹公公。不如偶们一起结拜在曹公公手下吧,省得级别太低,以后查找掌门麻烦。” “唔,有道理。” 白面葫芦娃接着打电话给刚才拜访过的三营长……仙子狗尾巴花也做了同样的事情。 这样,查询中所有涉及到的人物都聚集在曹公公的直接领导下。每次查询都做了优化处理,所以整个门派树的层数都会维持在比较低的水平上。路径压缩的代码,看得懂很好,看不懂可以自己模拟一下,很简单的一个递归而已。总之它所实现的功能就是这么个意思。

于是,问题圆满解决。。。。。。。。。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
int pre[1010]; //里面全是掌门
 
int unionsearch(int root)
{
	int son, tmp;
	son = root;
	while(root != pre[root]) //寻找掌门ing……,如果root 之前不是root 就找啊找,直到找到root他自己是root
		root = pre[root];
	while(son != root) //路径压缩
	{
		tmp = pre[son];
		pre[son] = root;  //当找到之后,把最开始进来的son,然后root 他之间的父全部变为root 
		son = tmp;
	}
	return root; //掌门驾到~
}
 
int main()
{
	int num, road, total, i, start, end, root1, root2;
	while(scanf("%d%d", &num, &road) && num)
	{
		total = num - 1; //共num-1个门派
		for(i = 1; i <= num; ++i) //每条路都是掌门
			pre[i] = i;
		while(road--)
		{
			scanf("%d%d", &start, &end); //他俩要结拜
			root1 = unionsearch(start);
			root2 = unionsearch(end);
			if(root1 != root2) //掌门不同?踢馆!~
			{
				pre[root1] = root2;
				total--; //门派少一个,敌人(要建的路)就少一个
			}
		}
		printf("%d\n", total);//天下局势:还剩几个门派
	}
	return 0;
}

并查集(模板&典型例题整理)

转载coolwriter 最后发布于2019-02-23 16:40:27 阅读数 802 收藏
展开

并查集,并查集是一种树形结构,又叫“不相交集合”,保持了一组不相交的动态集合,每个集合通过一个代表来识别,代表即集合中的某个成员,通常选择根做这个代表。

也就是说,并查集是用来处理不相交集合类型问题,如问不相交集合有几个。给定节点,找到该节点所在集合元素个数,当然这只是水题。并查集会与其他算法结合着考,如LCA中的tarjian算法。后续博客会整理。

并查集,顾名思义,主要分三部分。

一:合并:给出两点关系,如果属于同一集合,进行merge

二:查:在合并时,需要先写出查,即找到该点的祖先点

三:集:merge后,将新加入的点的祖先点更新

然后,点集就因为共同的祖先点被分为不同的集合啦

结合例题更容易理解

hdu1232畅通工程

畅通工程

某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还需要建设多少条道路?

Input

测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是城镇数目N ( < 1000 )和道路数目M;随后的M行对应M条道路,每行给出一对正整数,分别是该条道路直接连通的两个城镇的编###号。为简单起见,城镇从1到N编号。

注意:两个城市之间可以有多条道路相通,也就是说

3 3 
1 2 
1 2 
2 1 

这种输入也是合法的

当N为0时,输入结束,该用例不被处理。

Output

对每个测试用例,在1行里输出最少还需要建设的道路数目。

Sample Input

4 2 
1 3 
4 3 
3 3 
1 2 
1 3 
2 3 
5 2 
1 2 
3 5 
999 0 
0

Sample Output

1 
0 
2 
998

就是说将所有独立的集合连接起来还需要几条路,那只要找到独立集合个数-1就可以啦

#include<bits/stdc++.h>
using namespace std;
const int maxn=1e6+10;
int pre[maxn];
int f[maxn]; 
int getf(int x)
{
	if(f[x]==x)return x;  //如果x的根是他自己,就返回根
	return f[x]=getf(f[x]);  //find father  如果不是就找这个的父节点,继续找根
}

int merge(int x,int y)
{
	int a=getf(x);  //合并
	int b=getf(y);   //如果两个的父祖不是一个,就合并起来
	if(a!=b)
	f[a]=b;
}
int main()
{
	
	int n,m;
	while(scanf("%d",&n))
{
	 if(!n)break;	scanf("%d",&m);
	for(int i=1;i<=n;i++)
	{
		f[i]=i; //先把每个设为自己的父;
	}
	
	for(int i=1;i<=m;i++)
	{
		int  x,y;
		cin>>x>>y;
	   merge(x,y);
	 } 
	 int sum=0;
	 for(int i=1;i<=n;i++)
	 {
	 	if(f[i]==i) //只有根结点才会等于自己,所以说就是几个部落and so on.
	 	{
	 		sum++; 
		 }
	 }
	 cout<<sum-1<<endl;
	 
}
return 0;
	
}
posted @ 2020-03-05 21:21  小申同学  阅读(228)  评论(0编辑  收藏  举报