迁移学习(训练数据少的可怜时的办法)

感觉这东西很厉害呀

比如我训练出了一个识别是不是猫的神经网络(A),这个网络做的很好

然后我现在想训练一个识别手写体的网络

但是我的模型做的比较差,因为我的数据量较小什么的

 

我可以把A的最后一层去掉,然后加上一层(b)使输出符合格式

resize我的手写体(X)使其适应输入

然后我用手写体的图片去训练最后一个全接层的W_b

我们也能得到精度不错的结果

 

因为对于神经网络,我们的前几层会生成点,线条,简单的图形之类的

只要是同一种,我们都能拿过来直接用

posted @ 2018-04-27 00:16  shensobaolibin  阅读(1256)  评论(0编辑  收藏  举报