对神经网络大致框架的理解

在网上看了吴恩达老师的慕课,现在来总结一下

神经网络: 由神经元组成的网络,这些神经元构成了一个完全图

神经元:  神经元有很多种,有线性的,有卷积的。

结合具体的例子来说一下,比如说图像识别吧

我把一张图像输入每一个神经元,然后每一个神经元对这个图像进行处理,然后输出一个预测值。

总有点仿生学的感觉

 

然后就是对神经网络的训练了

我们训练神经网络需要大概一千个左右的样本吧

然后对于每个样本,我们都要附带一个标签,表面这个样本是正样本还是负样本。

经过几千次的训练之后,我们的神经网络就能处理图片啦

 

现在我们可以发现一个问题,神经网络只能处理不是0就是1的问题,这个。。。在后面的学习中也许会有解答吧

posted @ 2017-11-10 17:21  shensobaolibin  阅读(216)  评论(0编辑  收藏  举报