Fork me on GitHub

RabbitMQ消息队列

一、RabbitMQ安装

1、简介

RabbitMQ是一个消息代理:它接受和转发消息。可以将其视为邮局,当你要发送的邮件放入邮局中时,你可以确认邮件是否安全的达到接收者的手中,这里RabbitMQ就相当于邮局的角色。

2、RabbitMQ的安装

  • 安装erlang

因为RabbitMQ是erlang语言开发的,所以需要先安装erlang。

从EPEL源安装:

[root@localhost ~]# yum install epel-release
[root@localhost ~]# yum install erlang 
  • 安装RabbitMQ

下载:

[root@localhost ~]# wget http://www.rabbitmq.com/releases/rabbitmq-server/v3.6.6/rabbitmq-server-3.6.6-1.el7.noarch.rpm

安装:

[root@localhost ~]# yum install rabbitmq-server-3.6.6-1.el7.noarch.rpm 

启动服务:

[root@localhost bin]# rabbitmq-server start

查看用户以及权限:

查看用户:rabbitmqctl list_users  

查看用户权限:rabbitmqctl list_user_permissions guest

新增用户: rabbitmqctl add_user admin 123

赋予管理员权限:

rabbitmqctl set_user_tags admin administrator 

rabbitmqctl set_permissions -p "/" admin ".*" ".*" ".*" 

启动web监控:

[root@localhost ~]# rabbitmq-plugins enable rabbitmq_management

访问默认端口15672

 

另外,如果操作RabbitMQ,需要安装API,进行操作,在开发环境中安装pika模块

pip install pika

二、六种工作模式

1、生产者消费者模式

 

“P”是生产者,“C”是消费者。中间的框是一个队列 ,用于存放消息。

生产者是将任务放入到队列中:

import pika

#创建用户名密码
credentials = pika.PlainCredentials("admin","123")
#创建连接
connection = pika.BlockingConnection(pika.ConnectionParameters('192.168.0.104',credentials=credentials))
channel = connection.channel()
# 创建一个队列
channel.queue_declare(queue='hello')

channel.basic_publish(exchange='',
                      routing_key='hello', # 消息队列名称
                      body='helloworld')
connection.close()

消费者是取出任务队列并且进行处理:

import pika

credentials = pika.PlainCredentials("admin","123")
connection = pika.BlockingConnection(pika.ConnectionParameters('192.168.0.104',credentials=credentials))
channel = connection.channel()

# 创建一个队列,如果已经存在就不会重新创建
channel.queue_declare(queue='hello')

def callback(ch, method, properties, body):
    print("消费者接受到了任务: %r" % body)

channel.basic_consume('hello',callback,auto_ack=True)

channel.start_consuming()

详情参考:https://www.rabbitmq.com/tutorials/tutorial-one-python.html

2、 竞争消费者模式

  (1)消息确认auto_ack

  如果消费者(上图中的C1和C2)处理从队列取出的任务,但是没有完成时就已经挂掉了,那么如果使用之前的代码auto_ack=True,一旦RabbitMQ向消费者传递任务,它立即将其标记为删除。在这种情况下,如果挂掉一个消费者,将丢失它刚刚处理的任务。

   为了确保任务永不丢失,RabbitMQ支持消息确认消费者发回ack(nowledgement)告诉RabbitMQ已收到,处理了特定消息,RabbitMQ可以自由删除它。

  如果消费者挂掉(其通道关闭,连接关闭或TCP连接丢失)而不发送确认,RabbitMQ将未完全处理的任务并重新排队。如果同时有其他在线消费者,则会迅速将其重新发送给其他消费者

主要变动在于消费者的变动:

import pika

credentials = pika.PlainCredentials("admin","123")
connection = pika.BlockingConnection(pika.ConnectionParameters('192.168.0.104',credentials=credentials))
channel = connection.channel()

# 创建一个队列,如果已经存在就不会重新创建
channel.queue_declare(queue='hello')

def callback(ch, method, properties, body):
    print("消费者接受到了任务: %r" % body)

    ch.basic_ack(delivery_tag=method.delivery_tag)#防止消费者挂掉任务丢失
channel.basic_consume('hello',callback,auto_ack=False)#默认情况auto_ack=False手动消息确认打开

channel.start_consuming()

生产者未变动:

import pika

#创建用户名密码
credentials = pika.PlainCredentials("admin","123")
#创建连接
connection = pika.BlockingConnection(pika.ConnectionParameters('192.168.0.104',credentials=credentials))
channel = connection.channel()
# 创建一个队列
channel.queue_declare(queue='hello')

channel.basic_publish(exchange='',
                      routing_key='hello', # 消息队列名称
                      body='你好')
connection.close()

  (2)消息持久性

如果RabbitMQ服务器停止,队列中任务仍然会丢失。此时需要使用durable 参数,声明队列是持久的,但是此时以前的队列就不可以使用,持久的队列需要重新声明,也就是说需要改一下队列名称。

主要变动在与生产者的变动:

import pika

#创建用户名密码
credentials = pika.PlainCredentials("admin","123")
#创建连接
connection = pika.BlockingConnection(pika.ConnectionParameters('192.168.0.104',credentials=credentials))
channel = connection.channel()
# 创建一个持久化队列
channel.queue_declare(queue = 'task_queue',durable = True)

channel.basic_publish(exchange='',
                      routing_key='task_queue', # 消息队列名称
                      body='你好',
                      properties=pika.BasicProperties(
                          delivery_mode=2,  # 将消息标记为持久性
                      ))

connection.close()

消费者未变动:

import pika

credentials = pika.PlainCredentials("admin","123")
connection = pika.BlockingConnection(pika.ConnectionParameters('192.168.0.104',credentials=credentials))
channel = connection.channel()

# 声明一个队列,已经创建就不会再创建了
channel.queue_declare(queue='task_queue')

def callback(ch, method, properties, body):
    print("消费者接受到了任务: %r" % body)

channel.basic_consume(‘task_queue’,callback,auto_ack=True)

channel.start_consuming()

  (3)公平派遣

  可以看到上面的图,一个生产者,两个消费者,生产者将任务不断的放入到队列中,消费者不断的取出任务,那么这两个消费者是如何取任务的呢?

  RabbitMQ默认情况下是均匀地发送消息,也就是消费者一个接一个的取出任务。这样如果一个消费者处理任务的时间比较长,还是均匀的给任务,势必造成一个消费者将经常忙,而另一个会很闲。

  此时可以通过basic.qos方法和 prefetch_count = 1设置,将任务发送给空闲的消费者。

变动主要在消费者:

import pika

credentials = pika.PlainCredentials("admin","123")
connection = pika.BlockingConnection(pika.ConnectionParameters('192.168.0.104',credentials=credentials))
channel = connection.channel()

# 声明一个队列(创建一个队列)
channel.queue_declare(queue='hello')

def callback(ch, method, properties, body):
    print("消费者接受到了任务: %r" % body)

channel.basic_qos(prefetch_count=1)
channel.basic_consume('hello',callback,auto_ack=True)

channel.start_consuming()

生产者未变动:

import pika
# 无密码
# connection = pika.BlockingConnection(pika.ConnectionParameters('192.168.0.104'))

# 有密码
credentials = pika.PlainCredentials("admin","123")
connection = pika.BlockingConnection(pika.ConnectionParameters('192.168.0.104',credentials=credentials))
channel = connection.channel()
# 声明一个队列(创建一个队列)
channel.queue_declare(queue='hello')

channel.basic_publish(exchange='',
                      routing_key='hello', # 消息队列名称
                      body='jjfdk')
connection.close()

详情参考:https://www.rabbitmq.com/tutorials/tutorial-two-python.html

 3、发布/订阅

  在之前的RabbittMQ中主要用于将任务放入一个队列钟,然后消费者分别取出任务进行处理,而发布订阅是每一个消费者都将拥有自己的一个队列,从而获取消息。这样每一个消费者都将拥有相同的消息。

  在上述模型中,“P”是生产者,也就是消息制造者,“X”是exchange ,用于将生产出来的消息给每一个队列给一份,中间红色的就是队列,“C1”和“C2”是消息接受者。

发布者:

import pika
credentials = pika.PlainCredentials("admin","123")
connection = pika.BlockingConnection(pika.ConnectionParameters('192.168.0.104',credentials=credentials))
channel = connection.channel()

channel.exchange_declare(exchange='ex1',exchange_type='fanout')#fanout工作方式为ex1每一个队列添加消息

channel.basic_publish(exchange='ex1',
                      routing_key='',
                      body='abcd')

connection.close()

订阅者:

import pika

credentials = pika.PlainCredentials("admin","123")
connection = pika.BlockingConnection(pika.ConnectionParameters('192.168.0.104',credentials=credentials))
channel = connection.channel()

# exchange='ex1',exchange的名称
# exchange_type='fanout' , 工作方式将消息发送给所有的队列
channel.exchange_declare(exchange='ex1',exchange_type='fanout')

# 随机生成一个队列
result = channel.queue_declare(queue = '',exclusive = True)
queue_name = result.method.queue
# 让exchange和queque进行绑定.
channel.queue_bind(exchange='ex1',queue=queue_name)

详情参考:https://www.rabbitmq.com/tutorials/tutorial-three-python.html 

4、关键字发布/订阅

 上述发布的工作方式是:

exchange_type='fanout'

将消息发送给所有队列,而选择性的发布/订阅,需要使用exchange_type='direct'和routing_key=""进行关键字发布订阅。

发布者

import pika
credentials = pika.PlainCredentials("admin","123")
connection = pika.BlockingConnection(pika.ConnectionParameters('192.168.0.104',credentials=credentials))
channel = connection.channel()

channel.exchange_declare(exchange='ex2',exchange_type='direct')

channel.basic_publish(exchange='ex2',
                      routing_key='gh',
                      body='nhgjod')

connection.close()

exchange名称为“ex2”,工作方式为“direct”,然后将exchange与关键字routing_key关键字进行绑定。

订阅者1

import pika

credentials = pika.PlainCredentials("admin","123")
connection = pika.BlockingConnection(pika.ConnectionParameters('192.168.0.104',credentials=credentials))
channel = connection.channel()

channel.exchange_declare(exchange='ex2',exchange_type='direct')

# 随机生成一个队列
result = channel.queue_declare(queue = '',exclusive=True)
queue_name = result.method.queue

# 让exchange和queque进行绑定.
channel.queue_bind(exchange='ex2',queue=queue_name,routing_key='bright')
channel.queue_bind(exchange='ex2',queue=queue_name,routing_key='gh')

exchange与queue以及关键字进行绑定,routing_key=“gh”可以收到消息。

订阅者2

import pika

credentials = pika.PlainCredentials("admin","123")
connection = pika.BlockingConnection(pika.ConnectionParameters('192.168.0.104',credentials=credentials))
channel = connection.channel()

channel.exchange_declare(exchange='ex2',exchange_type='direct')

# 随机生成一个队列
result = channel.queue_declare(queue = '',exclusive=True)
queue_name = result.method.queue

# 让exchange和queque进行绑定.
channel.queue_bind(exchange='ex2',queue=queue_name,routing_key='bright')

def callback(ch, method, properties, body):
    print("消费者接受到了任务: %r" % body)

channel.basic_consume(queue_name,callback,auto_ack=True)

channel.start_consuming()

routing_key=“bright”不能接收到关键字为“gh”的发布者发布的消息。

详情参考:https://www.rabbitmq.com/tutorials/tutorial-four-python.html

5、关键字模糊匹配发布

 

可以看到使用type=topic,以及使用“#”以及“*”:

当队列绑定“#”绑定routing_key时,匹配任意字符
当特殊字符“
*”绑定routing_key时,匹配一个单词。

消息发布:

import pika
credentials = pika.PlainCredentials("admin","123")
connection = pika.BlockingConnection(pika.ConnectionParameters('192.168.0.104',credentials=credentials))
channel = connection.channel()

channel.exchange_declare(exchange='ex3',exchange_type='topic')

channel.basic_publish(exchange='ex3',
                      routing_key='bright.gh.km',
                      body='abcdefd')

connection.close()

可以看到关键字routing_key='bright.gh.km',其余的与之前发布/订阅并没什么区别。

消息订阅1:

import pika

credentials = pika.PlainCredentials("admin","123")
connection = pika.BlockingConnection(pika.ConnectionParameters('192.168.0.104',credentials=credentials))
channel = connection.channel()


channel.exchange_declare(exchange='ex3',exchange_type='topic')

# 随机生成一个队列
result = channel.queue_declare(queue="",exclusive=True)
queue_name = result.method.queue
# 让exchange和queque进行绑定.
channel.queue_bind(exchange='ex3',queue=queue_name,routing_key='bright.*')


def callback(ch, method, properties, body):
    print("消费者接受到了任务: %r" % body)

channel.basic_consume(queue_name,callback,auto_ack=True)

channel.start_consuming()

这时可以看到订阅者1的routing_key='bright.*',可以匹配发布消息以bright开头的后面跟一个单词,所以发布者的消息它接收不到。

订阅者2:

import pika

credentials = pika.PlainCredentials("admin","123")
connection = pika.BlockingConnection(pika.ConnectionParameters('192.168.0.104',credentials=credentials))
channel = connection.channel()


channel.exchange_declare(exchange='ex3',exchange_type='topic')

# 随机生成一个队列
result = channel.queue_declare(queue="",exclusive=True)
queue_name = result.method.queue
# 让exchange和queque进行绑定.
channel.queue_bind(exchange='ex3',queue=queue_name,routing_key='bright.#')


def callback(ch, method, properties, body):
    print("消费者接受到了任务: %r" % body)

channel.basic_consume(queue_name,callback,auto_ack=True)

channel.start_consuming()

这时可以看到订阅者1的routing_key='bright.#',可以匹配发布消息以bright开头的后面多个单词、字符,所以发布者的消息它可以接收到,这也就说明“#”比“*”更强大。

详情参考:https://www.rabbitmq.com/tutorials/tutorial-five-python.html

6、远程过程调用(RPC)

RPC工作方式:

  • 当客户端启动时,它会创建一个随机回调队列。
  • 对于RPC请求,客户端发送带有两个属性的消息: reply_to,设置为回调队列,correlation_id,设置为每个请求的唯一值。
  • 请求被发送到rpc_queue队列。
  • Server正在等待rpc_queue上的请求。当出现请求时,它会执行任务并使用reply_to字段中的队列将结果返回给客户端
  • 客户端等待回调队列上的数据。出现消息时,它会检查correlation_id属性。如果它与请求中的值匹配,则将响应返回给应用程序。

客户端:

import pika
import uuid

class FibonacciRpcClient(object):
    def __init__(self):
        credentials = pika.PlainCredentials("admin", "123")
        self.connection = pika.BlockingConnection(pika.ConnectionParameters('192.168.0.104', credentials=credentials))
        self.channel = self.connection.channel()

        # 随机生成一个消息队列(用于接收结果)
        result = self.channel.queue_declare(queue="",exclusive=True)
        self.callback_queue = result.method.queue

        # 监听消息队列(返回结果的队列)中是否有值返回,如果有值则执行 on_response 函数(一旦有结果,则执行on_response)
        self.channel.basic_consume(self.callback_queue,self.on_response, auto_ack=True)

    def on_response(self, ch, method, props, body):
        if self.corr_id == props.correlation_id:
            self.response = body

    def call(self, n):
        self.response = None
        self.corr_id = str(uuid.uuid4())

        # 发送一个任务包含的内容:  任务id = corr_id ;任务内容 = '10' ;用于接收结果的队列名称
        self.channel.basic_publish(exchange='',
                                   routing_key='rpc_queue', # 接收任务的队列名称
                                   properties=pika.BasicProperties(
                                         reply_to = self.callback_queue, # 用于接收结果的队列
                                         correlation_id = self.corr_id, # 任务ID
                                         ),
                                   body=str(n))

        while self.response is None:
            self.connection.process_data_events()

        return self.response

fibonacci_rpc = FibonacciRpcClient()

response = fibonacci_rpc.call(10)
print('结果:',response)

在客户端需要做以下的事情:

  • 建立连接
  • 随机生成用于接收返回结果的消息队列
  • 监听接收返回结果的消息队列,看是否有结果(是否执行on_response)
  • 定义主调用方法,执行rpc请求,包含请求的详细信息
  • 等待响应

服务端:

import pika
credentials = pika.PlainCredentials("admin","123")
connection = pika.BlockingConnection(pika.ConnectionParameters('192.168.0.104',credentials=credentials))
channel = connection.channel()

# 监听任务队列,是否有任务到来
channel.queue_declare(queue='rpc_queue')

def on_request(ch, method, props, body):
    n = int(body)
    response = n*100
    # props.reply_to  要放结果的队列.
    # props.correlation_id  任务id
    ch.basic_publish(exchange='',
                     routing_key=props.reply_to,
                     properties=pika.BasicProperties(correlation_id= props.correlation_id),
                     body=str(response))
    ch.basic_ack(delivery_tag=method.delivery_tag)

channel.basic_qos(prefetch_count=1)
channel.basic_consume(queue = 'rpc_queue',on_message_callback = on_request)
channel.start_consuming()

在服务端需要做以下的事情:

  • 建立连接
  • 监听请求队列,看是否有请求到来。
  • basic_consume声明了一个回调,是RPC服务器的核心。它在收到请求时执行。处理请求并发回响应。
  • 想要运行多个服务器进程。为了在多个服务器上平均分配负载,需要设置prefetch_count

详情参考:https://www.rabbitmq.com/tutorials/tutorial-six-python.html

posted @ 2019-06-14 13:21  iveBoy  阅读(1032)  评论(0编辑  收藏  举报
TOP