逆波兰计算器
package com.dai.stack; import java.util.List; import java.util.ArrayList; import java.util.Stack; import javax.sql.rowset.JoinRowSet; import javax.swing.text.AbstractDocument.BranchElement; public class PolandNotation { public static void main(String[] args) { //将中缀表达式转后缀表达式 //直接扫描字符串不方便,不妨先将字符串转化成中缀对应的List String expression = "1+((2+3)*4)-5"; List<String> infixExpressionList = toInfixExpressionList(expression); System.out.println("中缀表达式对应的List" + infixExpressionList); List<String> parseSuffixExpressionList = parseSuffixExpressionList(infixExpressionList); System.out.println("后缀表达式对应的list:"+ parseSuffixExpressionList); System.out.println(expression+ "=" + calculate(parseSuffixExpressionList)); } //定义一个逆波兰表达式 //(3+4)*5-6 /*String suffixExpression = "3 4 + 5 * 6 -"; // List<String> rpnList = getListString(suffixExpression); System.out.println("rpnList" + rpnList); int res = calculate(rpnList); System.out.println("计算的结果是=" + res); } //将中缀表达式转化成对应的List*/ //将中缀List转为后缀List public static List<String> parseSuffixExpressionList(List<String> ls){ //定义两个栈 Stack<String> s1 = new Stack<String>(); //符号栈 //s2在整个过程中没有pop操作,还要逆序输出,直接用List 替代更好 //Stack<String> s2 = new Stack<String>(); //存中间结果的栈 List<String> s2 = new ArrayList<String>(); //遍历ls for(String item : ls) { //如果是一个数,就加入到s2 if(item.matches("\\d+")) { s2.add(item); }else if (item.equals("(")) { s1.push(item); }else if (item.equals(")")) { while (!s1.peek().equals("(")) { s2.add(s1.pop()); } s1.pop(); //将小括号弹出栈 }else { //当item优先级<=栈顶的优先级,将s1栈顶弹出加入到s2 while(s1.size() != 0 && Operation.getValue(s1.peek()) >= Operation.getValue(item)) { s2.add(s1.pop()); } //将item压入栈 s1.push(item); } } while(s1.size() != 0) { s2.add(s1.pop()); } return s2; } //将中缀转为List public static List<String> toInfixExpressionList(String s){ List<String> ls = new ArrayList<String>(); int i = 0; //指针,用于遍历字符串 String str; //多位数拼接 char c; do { //如果c非数字,则加入ls if((c=s.charAt(i))<48 || (c=s.charAt(i))>57) { ls.add(""+c); i++; }else{//考虑多位数 str = ""; while(i < s.length() && (c=s.charAt(i))>=48 && (c=s.charAt(i))<=57) { str += c; i++; } ls.add(str); } } while (i < s.length()); return ls; } //将逆波兰表达式,依次将数据和运算符 放入到ArrayList中 public static List<String> getListString(String suffixExpression){ //将sufffixExpression 分割 String[] split = suffixExpression.split(" "); List<String> list = new ArrayList<String>(); for(String ele : split) { list.add(ele); } return list; } //完成对逆波兰表达式的计算 public static int calculate(List<String> ls) { //创建一个栈即可 Stack<String> stack = new Stack<String>(); //遍历ls for(String item:ls) { //使用正则表达式取数 if (item.matches("\\d+")) {//匹配的是多位数 //入栈 stack.push(item); }else { //pop出两个数,并运算,再入栈 int num2 = Integer.parseInt(stack.pop()); int num1 = Integer.parseInt(stack.pop()); int res = 0; if(item.equals("+")) { res = num1+num2; }else if (item.equals("-")) { res = num1 - num2; }else if (item.equals("*")) { res = num1 * num2; }else if (item.equals("/")) { res = num1 / num2; }else { throw new RuntimeException("运算符有误!"); } stack.push(res+""); } } //最后留下来的就是结果 return Integer.parseInt(stack.pop()); } } //一个可以返回运算符优先级的类 class Operation{ private static int ADD = 1; private static int SUB = 1; private static int MUL = 2; private static int DIV = 2; public static int getValue(String operation) { int result = 0; switch (operation) { case "+": result = ADD; break; case "-": result = SUB; break; case "*": result = MUL; break; case "/": result = DIV; break; default: //throw new RuntimeException("运算符非法"); break; } return result; } }