[Leetcode]Unique Paths
Unique Paths
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
一种使用数学方法,简单排列组合。注意可能超过int,使用double,最后强制类型转换。
class Solution { public: int uniquePaths(int m, int n) { if(m <=0 || n <= 0) return 0; long long res = 1; for(int i = n; i < m+n-1 ; i++){ res = res * i / (i- n + 1); } return (int)res; } };
另外一种dp。
class Solution { public: int uniquePaths(int m, int n) { vector<vector<int> > vec(m,vector<int>(n,1)); for (int i=1;i<m;++i) { for (int j = 1;j<n;++j) { vec[i][j] = vec[i-1][j] + vec[i][j-1]; } } return vec[m-1][n-1]; } };
Unique Paths II
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
dp做了一些改变。
class Solution { public: int uniquePathsWithObstacles(vector<vector<int>>& g) { int m = g.size(); int n =g[0].size(); vector<vector<int> > path(m,vector<int>(n)); for(int i = 0; i < n; ++i) { if(g[0][i] == 1) { for(;i<n;++i) { path[0][i] = 0; } break; } path[0][i] = 1; } for (int j = 0;j <m;++j) { if(g[j][0] == 1) { for(;j<m;++j) { path[j][0] = 0; } break; } path[j][0] = 1; } for(int i =1;i<m;++i) { for(int j =1;j<n;++j) { if(g[i][j] == 1) path[i][j] = 0; else { path[i][j] = path[i-1][j] + path[i][j-1]; } } } return path[m-1][n-1]; } };
话说一遍ac的感觉真好啊~