隐藏页面特效

CF 977E Cyclic Components

E. Cyclic Components
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

You are given an undirected graph consisting of nn vertices and mm edges. Your task is to find the number of connected components which are cycles.

Here are some definitions of graph theory.

An undirected graph consists of two sets: set of nodes (called vertices) and set of edges. Each edge connects a pair of vertices. All edges are bidirectional (i.e. if a vertex aa is connected with a vertex bb, a vertex bb is also connected with a vertex aa). An edge can't connect vertex with itself, there is at most one edge between a pair of vertices.

Two vertices uu and vv belong to the same connected component if and only if there is at least one path along edges connecting uu and vv.

A connected component is a cycle if and only if its vertices can be reordered in such a way that:

  • the first vertex is connected with the second vertex by an edge,
  • the second vertex is connected with the third vertex by an edge,
  • ...
  • the last vertex is connected with the first vertex by an edge,
  • all the described edges of a cycle are distinct.

A cycle doesn't contain any other edges except described above. By definition any cycle contains three or more vertices.

There are 66 connected components, 22 of them are cycles: [7,10,16][7,10,16] and [5,11,9,15][5,11,9,15].
Input

The first line contains two integer numbers nn and mm (1n21051≤n≤2⋅1050m21050≤m≤2⋅105) — number of vertices and edges.

The following mm lines contains edges: edge ii is given as a pair of vertices viviuiui (1vi,uin1≤vi,ui≤nuiviui≠vi). There is no multiple edges in the given graph, i.e. for each pair (vi,uivi,ui) there no other pairs (vi,uivi,ui) and (ui,viui,vi) in the list of edges.

Output

Print one integer — the number of connected components which are also cycles.

Examples
input
Copy
5 4 1 2 3 4 5 4 3 5
output
Copy
1
input
Copy
17 15 1 8 1 12 5 11 11 9 9 15 15 5 4 13 3 13 4 3 10 16 7 10 16 7 14 3 14 4 17 6
output
Copy
2
Note

In the first example only component [3,4,5][3,4,5] is also a cycle.

The illustration above corresponds to the second example.

【题意】

给n个点,m条无向边,找有几个。(定义:t个点,t条边,首尾依次相接,不含有其他边,围成个圈)

 

【分析】

网上的思路:利用并查集查找环的个数

 

我的思路:dfs判环,稍加修饰——

加个记忆化操作:显然每个点要么是一个环上的一点,要么不是;

1、当这个点的度数不为2,一定不是

2、当这个点的邻点不是,一定不是

【代码】

#include<vector> #include<cstdio> #include<cstring> using namespace std; typedef long long ll; const int N=2e5+5; int n,m,du[N],f[N];bool vis[N]; vector<int> e[N]; inline void Init(){ scanf("%d%d",&n,&m); for(int i=1,x,y;i<=m;i++){ scanf("%d%d",&x,&y); e[x].push_back(y); e[y].push_back(x); du[x]++;du[y]++; } } int dfs(int x,int fa){ int &now=f[x]; if(~now) return now; now=1; if(du[x]!=2) return now=0; if(vis[x]) return now=1; vis[x]=1; for(int i=0;i<e[x].size();i++){ int v=e[x][i]; if(x!=fa) now&=dfs(v,x); if(!now) return now; } return now; } inline void Solve(){ memset(f,-1,sizeof f); int ans=0; for(int i=1;i<=n;i++){ if(!vis[i]){ if(dfs(i,0)){ ans++; } } } printf("%d\n",ans); } int main(){ Init(); Solve(); return 0; }

__EOF__

本文作者shenben
本文链接https://www.cnblogs.com/shenben/p/10497641.html
关于博主:评论和私信会在第一时间回复。或者直接私信我。
版权声明:本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议。转载请注明出处!
声援博主:如果您觉得文章对您有帮助,可以点击文章右下角推荐一下。您的鼓励是博主的最大动力!
posted @   神犇(shenben)  阅读(202)  评论(0编辑  收藏  举报
编辑推荐:
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
阅读排行:
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 地球OL攻略 —— 某应届生求职总结
· 周边上新:园子的第一款马克杯温暖上架
· Open-Sora 2.0 重磅开源!
· 提示词工程——AI应用必不可少的技术
历史上的今天:
2017-03-08 3993: [SDOI2015]星际战争
2017-03-08 P3305 [SDOI2013]费用流
点击右上角即可分享
微信分享提示