An Introduction to Statistical Learning with Applications in R (ISL) - Introduction
是自己最近学习 "An Introduction to Statistical Learning with Applications in R" 的一个笔记整理。
http://www-bcf.usc.edu/~gareth/ISL/
本书的作者是Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani,发表于February 11, 2013。
此书对统计入门,尤其是监督学习的各种方法,进行了系统性的介绍。更棒的是,每章最后的lab部分,结合了R语言应用实际问题,课后习题中也有专门的R语言练习。
习题的非官方答案可参考 http://blog.princehonest.com/stat-learning/
下面就开始啦~
Contents
- Introduction
- Statistical Learning: basic terminology, the K-nearest neighbor classifier
- Linear Regression
- Classification:logistic regression and linear discriminant analysis (LDA)
- Resampling Methods: cross-validation and the bootstrap
- Linear Model Selection and Regularization: stepwise selection, ridge regression, principal components regression, partial least squares, and the lasso.
- Moving Beyond Linearity: non-linear additive models
- Tree-Based Methods: bagging, boosting, and random forests
- Support Vector Machines
- Unsupervised Learning: principal components analysis (PCA), K-means clustering, and hierarchical clustering
A Brief History of Statistical Learning
- 1800's, method of least squares, linear regression
- 1936, Fisher's linear discriminant analysis (LDA)
- 1940, logistic regression
- 1970's, generalized linear models
- 1980's, classification and regression trees
- 1986, generalized additive models
- today, machine learning