Arrays, Hashtables and Dictionaries
- Built-in arrays
- Javascript Arrays(Javascript only)
- ArrayLists
- Hashtables
- Generic Lists
- Generic Dictionaries
- 2D Arrays
All types of collections share a few common features:
- You can fill them with objects, and read back the values that you put in.
- You can ‘iterate’ through them, which means you can create a loop which runs the same piece of code against each item in the collection.
- You can get the length of the collection.
- For most collections – but not all – you can arbitrarily add and remove items at any position, and sort their contents.
Built-in Arrays
The most basic type of array, available in both JS and C#, is the built-in array. The main shortcoming of built-in arrays is that they have a fixed-size (which you choose when you declare the array), however this shortcoming is balanced by their very fast performance. For this reason, built-in arrays are the best choice if you need the fastest performance possible from your code (for example, if you’re targeting iPhone). If there is a fixed and known number of items that you want to store, this is the best choice.
It’s also common to use this type of array if you have a varying number of items to store, but you can decide on a ‘maximum’ for the number of objects that you’ll need. You can then leave some of the elements in the array null when they’re not required, and design your code around this. For example, for the bullets in a shooting game, you may decide to use an array of size 50, allowing a maximum of 50 active bullets at any one time.
This type of array is also useful because it’s one of the type osf array which show up in Unity’s inspector window. This means that a built-in array ia good choice if you want to populate its contents in the Unity editor, by dragging and dropping references.
It’s also usually the type of array you get back from Unity functions, if you use a function which may return a number of objects, such as GetComponentsInChildren.
Built-in arrays are declared by specifying the type of object you want to store, followed by brackets. Eg:
Basic Declaration & Use:
C#
// declaration TheType[] myArray = new TheType[lengthOfArray]; // declaration example using ints int[] myNumbers = new int[10]; // declaration example using GameObjects GameObject[] enemies = new GameObject[16]; // get the length of the array int howBig = myArray.Length; // set a value at position i myArray[i] = newValue; // get a value from position i TheType thisValue = myArray[i];
Javascript
// declaration var myArray = new TheType[lengthOfArray]; // declaration example using ints var myNumbers = new int[10]; // declaration example using GameObjects var enemies = new GameObject[16]; // get the length of the array var howBig = enemies.Length; // set a value at position i myArray[i] = newValue; // get a value from position i var thisValue = myArray[i]
Full MSDN Documentation for Built-in Array
Some direct links to useful Functions/Methods of Built-in Arrays:
IndexOf, LastIndexOf, Reverse, Sort, Clear, Clone
Javascript Arrays
The ‘Javascript Array’ in unity is a special class that is provided in addition to the standard .net classes. You can only declare them if you are using a Javascript syntax script – you can’t declare them in C#. Javascript arrays are dynamic in size, which means you don’t have to specify a fixed size. You can add and remove items to the array, and the array will grow and shrink in size accordingly. You also don’t have to specify the type of object you want to store. You can put objects of any type into a Javascript array, even mixed types in the same array.
Javascript arrays are therefore somewhat easier to use than built-in arrays, however they are a bit more costly in terms of performance (although performance cost here is only worth worrying about if you are dealing with very large numbers of objects, or if you’re targeting the iPhone). Another potential downside is that there are certain situations where you need to use explicit casting when retrieving items because of their ‘untyped’ nature – despite Javascript’s dynamic typing.
Basic Declaration & Use:
(Javascript Only)
// declaration var myArray = new Array(); // add an item to the end of the array myArray.Add(anItem); // retrieve an item from position i var thisItem = myArray[i]; // removes an item from position i myArray.RemoveAt(i); // get the length of the Array var howBig = myArray.length;
Full Unity Documentation for Javascript Array
Some direct links to useful Functions/Methods of Unity’s Javascript Arrays:
Concat, Join, Push, Add, Pop, Shift, RemoveAt, Unshift, Clear, Reverse,Sort
ArrayLists
The ArrayList is a .Net class, and is very similar to the Javascript Array mentioned previously, but this time available in both JS and C#. Like JS Arrays, ArrayLists are dynamic in size, so you can add and remove items, and the array will grow and shrink in size to fit. ArrayLists are also untyped, so you can add items of any kind, including a mixture of types in the same ArrayList. ArrayLists are also similarly a little more costly when compared to the blazingly fast performance of built-in arrays. ArrayLists have a wider set of features compared to JS Arrays, although neither of their feature sets completely overlaps the other.
Basic Declaration & Use:
Javascript
// declaration var myArrayList = new ArrayList(); // add an item to the end of the array myArrayList.Add(anItem); // change the value stored at position i myArrayList[i] = newValue; // retrieve an item from position i var thisItem : TheType = myArray[i]; (note the required casting!) // remove an item from position i myArray.RemoveAt(i); // get the length of the array var howBig = myArray.Count;
C#
// declaration ArrayList myArrayList = new ArrayList(); // add an item to the end of the array myArrayList.Add(anItem); // change the value stored at position i myArrayList[i] = newValue; // retrieve an item from position i TheType thisItem = (TheType) myArray[i]; // remove an item from position i myArray.RemoveAt(i); // get the number of items in the ArrayList var howBig = myArray.Count;
Full MSDN Documentation for ArrayList
Some direct links to useful Functions/Methods of the ArrayList:
Add, Insert, Remove, RemoveAt, Clear, Clone, Contains, IndexOf,LastIndexOf, GetRange, SetRange, AddRange, InsertRange,RemoveRange, Reverse, Sort, ToArray
Hashtables
A Hashtable is a type of collection where each item is made up of a “Key and Value” pair. It’s most commonly used in situations where you want to be able to do a quick look-up based on a certain single value. The piece of information that you use to perform the look-up is the ‘key’, and the object that is returned is the “Value”.
If you are familiar with web development, it’s similar to the type of data in a GET or POST request, where every value passed has a corresponding name. With a Hashtable however, both the keys and the values can be any type of object. For most practical applications, it’s usually the case that your keys are going to be all the same type (eg, strings) and your values are likely to be all of the same type too (eg, GameObjects, or some other class instance). Compare with ArrayLists, because Hashtable keys and values are untyped, you usually have to deal with the type casting yourself when you retrieve values from the collection.
Hashtables are designed for situations where you want to be able to quickly pick out a certain item from your collection, using some unique identifying key – similar to the way you might select a record from a database using an index, or the way you might pick out the contact details of a person using their name as the ‘unique identifier’.
Basic Declaration & Use:
Javascript
// declaration var myHashtable = new Hashtable(); // insert or change the value for the given key myHashtable[anyKey] = newValue; // retrieve a value for the given key var thisValue : ValueType = myHashtable[theKey]; (note the required type casting) // get the number of items in the Hashtable var howBig = myHashtable.Count; // remove the key & value pair from the Hashtable, for the given key. myHashtable.Remove(theKey);
C#
// declaration Hashtable myHashtable = new Hashtable(); // insert or change the value for the given key myHashtable[anyKey] = newValue; // retrieve a value for the given key ValueType thisValue = (ValueType)myHashtable[theKey]; // get the number of items in the Hashtable int howBig = myHashtable.Count; // remove the key & value pair from the Hashtable, for the given key. myHashtable.Remove(theKey);
Full MSDN Documentation for Hashtable Members
Some direct links to useful Functions/Methods of the HashTable:
Add, Remove, ContainsKey, ContainsValue, Clear
Generic List
First of all corrections to the original article: Generics are not supported at all on iPhone, (generics are now supported in Unity 3 iOS!). In addition, you can’t declare Generics in unity’s Javascript, (you can now declare generics in Unity 3′s Javascript!).
The Generic List (also known as List) is similar to the JS Array and the ArrayList, in that they have a dynamic size, and support arbitrary adding, getting and removing of items. The significant difference with the Generic List (and all other ‘Generic’ type classes), is that you explicitly specify the type to be used when you declare it – in this case, the type of object that the List will contain.(与ArrayList基本相同,但是唯一区别是显示的表明T)
Once you’ve declared it, you can only add objects of the correct type – and because of this restriction, you get two significant benefits:
- no need to do any type casting of the values when you come to retrieve them.
- performs significantly faster than ArrayList
This means that if you were going to create an ArrayList, but you know that you will only be putting objects of one specific type of object into it, (and you know that type in advance) you’re generally better off using a Generic List. For me, this tends to be true pretty much all the time.
The generic collections are not part of the standard System.Collections namespace, so to use them, you need to add a line a the top of any script in which you want to use them:
using System.Collections.Generic;
Basic Declaration & Use:
JS:
// declaration var myList = new List.<Type>(); // a real-world example of declaring a List of 'ints' var someNumbers = new List.<int>(); // a real-world example of declaring a List of 'GameObjects' var enemies = new List.<GameObject>(); // add an item to the end of the List myList.Add(theItem); // change the value in the List at position i myList[i] = newItem; // retrieve the item at position i var thisItem = List[i]; // remove the item from position i myList.RemoveAt(i);
C#:
// declaration List<Type> myList = new List<Type>(); // a real-world example of declaring a List of 'ints' List<int> someNumbers = new List<int>(); // a real-world example of declaring a List of 'GameObjects' List<GameObject> enemies = new List<GameObject>(); // add an item to the end of the List myList.Add(theItem); // change the value in the List at position i myList[i] = newItem; // retrieve the item at position i Type thisItem = List[i]; // remove the item from position i myList.RemoveAt(i);
Unity3d example:
using UnityEngine; using System.Collections; using System.Collections.Generic; using System; public class GenerciList : MonoBehaviour { List<String> phraseList = new List<String>(); void OnGUI() { int i = 0; foreach (String str in phraseList) { if (GUI.Button(new Rect(100, 20 * i, 200, 20), str)) { Debug.Log("Box #" + i + " is working"); } i++; } } void Update() { if (Input.GetKeyUp("z")) { phraseList.Add("Test string 1"); phraseList.Add("Test string 2"); phraseList.Add("Test string 3"); foreach (String str in phraseList) { Debug.Log(str); } } } }
Full MSDN Documentation for Generic List
Some direct links to useful Methods of the Generic List:
Add, Insert, Remove, RemoveAll, RemoveAt, Contains, IndexOf,LastIndexOf, Reverse, Sort, Clear, AddRange, GetRange, InsertRange,RemoveRange, ToArray
Generic Dictionary
This is another Generic class, so the same restrictions used to apply to old version of Unity, since now Unity 3, generics are now supported in Unity iOS and in Unity’s Javascript!.
The Generic Dictionary is to the Hashtable what the Generic List is to the ArrayList. The Generic Dictionary provides you with a structure for quickly looking up items from a collection (like the Hashtable), but it differs from the Hashtable in that you must specify explictly the types for the Keys and Values up-front, when you declare it. Because of this, you get similar benefits to those mentioned in the Generic List. Namely, no annoying casting needed when using the Dictionary, and a significant performance increase compared to the Hashtable.
Because you Generic Dictionary, you need to specify the types for both the Keys and the Values, the declaration line can end up a little long and wordy. However, once you’ve overcome this they are great to work with!
Again, to use this, you’ll need to include the Generic Collections package by including this line at the top of your script:
using System.Collections.Generic;
Basic Declaration & Use:
JS:
// declaration: var myDictionary = new Dictionary.<KeyType,ValueType>(); // and a real-world declaration example (where 'Person' is a custom class): var myContacts = new Dictionary.<string,Person>(); // insert or change the value for the given key myDictionary[anyKey] = newValue; // retrieve a value for the given key var thisValue = myDictionary[theKey]; // get the number of items in the Hashtable var howBig = myDictionary.Count; // remove the key & value pair from the Hashtable, for the given key. myDictionary.Remove(theKey);
C#:
// declaration: Dictionary<KeyType,ValueType> myDictionary = new Dictionary<KeyType,ValueType>(); // and a real-world declaration example (where 'Person' is a custom class): Dictionary<string,Person> myContacts = new Dictionary<string,Person>(); // insert or change the value for the given key myDictionary[anyKey] = newValue; // retrieve a value for the given key ValueType thisValue = myDictionary[theKey]; // get the number of items in the Hashtable int howBig = myDictionary.Count; // remove the key & value pair from the Hashtable, for the given key. myDictionary.Remove(theKey);
Full MSDN Documentation for Dictionary(TKey,TValue)
Some direct links to useful Methods of the Generic Dictionary:
Add, Remove, ContainsKey, ContainsValue, Clear
2D Array
So far, all the examples of Arrays and Collections listed above have been one-dimensional structures, but there may be an occasion where you need to place data into an array with more dimensions. A typical game-related example of this is a tile-based map. You might have a ‘map’ array which should have a width and a height, and a piece of data in each cell which determines the tile to display. It is also possible to have arrays with more than two dimensions, such as a 3D array or a 4D array – however if you have a need for a 3D or 4D array, you’re probably advanced enough to not require an explanation of how to use them!
There are two methods of implementing a multi-dimensional array. There are “real” multi-dimensional arrays, and there are “Jagged” arrays. The difference is this:
With a “real” 2D array, your array has a fixed “width” and “height” (although they are not called width & height). You can refer to a location in your 2d array like this: myArray[x,y].
In contrast, “Jagged” arrays aren’t real 2D arrays, because they are created by using nested one-dimensional arrays. In this respect, what you essentially have is a one-dimensional outer array which might represent your ‘rows’, and each item contained in this outer array is actually an inner array which represents the cells in that row. To refer to a location in a jagged array, you would typically use something like this:
myArray[y][x].
Usually, “real” 2D arrays are preferable, because they are simpler to set up and work with, however there are some valid cases for using jagged arrays. Such cases usually make use of the fact that – with a jagged array – each ‘inner’ array doesn’t have to be the same length (hence the origin of the term “jagged”).
Another important correction is that Unity’s Javascript used to have no support for creating 2D arrays – however since Unity 3.2, Unity’s JS now supports this.
Basic Declaration & Use of “real” 2D arrays:
JS:
// declaration: // a 16 x 4 array of strings var myArray = new string[16,4]; // and a real-world declaration example (where 'Tile' is a user-created custom class): // create an array to hold a map of 32x32 tiles var map = new Tile[32,32]; // set the value at a given location in the array myArray[x,y] = newValue; // retrieve a value from a given location in the array var thisValue = myArray[x,y]; // get the length of 1st dimension of the array var width = myArray.GetUpperBound(0); // get the length of 2nd dimension of the array var length = myArray.GetUpperBound(1);
C#:
// declaration: // a 16 x 4 array of strings string[,] myArray = new string[16,4]; // and a real-world declaration example (where 'Tile' is a user-created custom class): // create an array to hold a map of 32x32 tiles Tile[,] map = new Tile[32,32]; // set the value at a given location in the array myArray[x,y] = newValue; // retrieve a value from a given location in the array ValueType thisValue = myArray[x,y]; // get the length of 1st dimension of the array int width = myArray.GetUpperBound(0); // get the length of 2nd dimension of the array int length = myArray.GetUpperBound(1);