Ducci Sequence 解题心得

原题贴上

A Ducci sequence is a sequence of n-tuples of integers. Given an n-tuple of integers (a1a2, ... an), the next n-tuple in the sequence is formed by taking the absolute differences of neighboring integers:

 

 

a1a2... an$\displaystyle \rightarrow$ (| a1 - a2|,| a2 - a3|, ... ,| an - a1|)

 

Ducci sequences either reach a tuple of zeros or fall into a periodic loop. For example, the 4-tuple sequence starting with 8,11,2,7 takes 5 steps to reach the zeros tuple:

 

 

(8, 11, 2, 7) $\displaystyle \rightarrow$ (3, 9, 5, 1) $\displaystyle \rightarrow$ (6, 4, 4, 2) $\displaystyle \rightarrow$ (2, 0, 2, 4) $\displaystyle \rightarrow$ (2, 2, 2, 2) $\displaystyle \rightarrow$ (0, 0, 0, 0).

 

The 5-tuple sequence starting with 4,2,0,2,0 enters a loop after 2 steps:

 

 

(4, 2, 0, 2, 0) $\displaystyle \rightarrow$ (2, 2, 2, 2, 4) $\displaystyle \rightarrow$ ( 0, 0, 0, 2, 2$\displaystyle \rightarrow$ (0, 0, 2, 0, 2) $\displaystyle \rightarrow$ (0, 2, 2, 2, 2) $\displaystyle \rightarrow$ (2, 0, 0, 0, 2) $\displaystyle \rightarrow$

 

 

(2, 0, 0, 2, 0) $\displaystyle \rightarrow$ (2, 0, 2, 2, 2) $\displaystyle \rightarrow$ (2, 2, 0, 0, 0) $\displaystyle \rightarrow$ (0, 2, 0, 0, 2) $\displaystyle \rightarrow$ (2, 2, 0, 2, 2) $\displaystyle \rightarrow$ (0, 2, 2, 0, 0) $\displaystyle \rightarrow$

 

 

(2, 0, 2, 0, 0) $\displaystyle \rightarrow$ (2, 2, 2, 0, 2) $\displaystyle \rightarrow$ (0, 0, 2, 2, 0) $\displaystyle \rightarrow$ (0, 2, 0, 2, 0) $\displaystyle \rightarrow$ (2, 2, 2, 2, 0) $\displaystyle \rightarrow$ ( 0, 0, 0, 2, 2$\displaystyle \rightarrow$ ...

 

Given an n-tuple of integers, write a program to decide if the sequence is reaching to a zeros tuple or a periodic loop.

 

Input 

Your program is to read the input from standard input. The input consists of T test cases. The number of test casesT is given in the first line of the input. Each test case starts with a line containing an integer n(3$ \le$n$ \le$15), which represents the size of a tuple in the Ducci sequences. In the following line, n integers are given which represents the n-tuple of integers. The range of integers are from 0 to 1,000. You may assume that the maximum number of steps of a Ducci sequence reaching zeros tuple or making a loop does not exceed 1,000.

 

Output 

Your program is to write to standard output. Print exactly one line for each test case. Print `LOOP' if the Ducci sequence falls into a periodic loop, print `ZERO' if the Ducci sequence reaches to a zeros tuple.

The following shows sample input and output for four test cases.

 

Sample Input 

 

4 
4 
8 11 2 7 
5 
4 2 0 2 0 
7 
0 0 0 0 0 0 0 
6 
1 2 3 1 2 3

 

Sample Output 

 

ZERO 
LOOP 
ZERO 
LOOP


分析:
  题目让我们求循环出现的时候和全0出现的时候, 其实,全0出现后紧接着就会出现循环,所以我们只需专注于找到循环出现。
这里的循环也就是数字的排列出现重复,也就是发现重复即找到。
想到去重,第一个想到的便是STL中的set可以直接保证每个键是唯一的,然而这里这并不能将重复出现的时候标记出来,达不到解题。接着就很自然的想到“标记法”,即——将每种情形和一个bool值对应,出现过记为true,没出现过记为false。每次新出现一个情形先判断对应的bool值,然后就可以判断重复没有啦。
一种情形与一个值对应,最近正在学STL,然后立马就想到了map。
map<A,B> 应题目要求,A为一个有序对比较适合,所以可以用一个结构体将多个数字组成一个整体,B就很自然的使用bool类型。
可是还有一个问题,map<A,B> 里面的A必须要是定义了<操作符的,因为map判断A的唯一性必须要通过<符号比较,具体的判别机制是(a<b,b<a 有且仅有一个成立 ->a b不相等 //否则a b相等),这就需要我们重载A里的<操作符。
按照判别机制,我如下重载
1     bool operator <(const gro &b) const {
2         for (int i = 0; i < n; i++){
3             if (g[i] != b.g[i]) return g[i]<b.g[i];
4         }
5         return false;
6     }

有了这个认识,然后就可以写代码了,如下:

 1 #include<iostream>
 2 #include<algorithm>
 3 #include<map>
 4 #include<stdio.h>
 5 using namespace std;
 6 const int N = 16;
 7 bool isloop = 0;
 8 
 9 
10 struct gro
11 {
12     int g[N];
13     int n;
14     void read ()
15     {
16         for (int i = 0; i < n; i++)
17         {
18             cin >> g[i];
19         }
20     }
21     bool iszero(){
22         for (int i = 0; i < n; i++){
23             if (g[i] != 0){
24                 return false;
25             }
26         }
27         return true;
28     }
29 
30     bool operator <(const gro &b) const {
31         for (int i = 0; i < n; i++){
32             if (g[i] != b.g[i]) return g[i]<b.g[i];
33         }
34         return false;
35     }
36 
37     void change()
38     {
39         int temp = g[0];
40         for (int i = 0; i < n - 1; i++)
41         {
42             g[i] = abs(g[i] - g[i + 1]);
43         }
44         g[n - 1] = abs(temp - g[n - 1]);
45     }
46 
47 } g1;
48 
49 
50 
51 
52 
53 map <gro, bool> group;
54 
55 int main()
56 {
57     int T;
58     cin >> T;
59     while (T--){
60         cin >> g1.n;
61         g1.read();
62         group.clear();    // 因为有多组数据,记得要清空!!!
63 group[g1] = true; 64 for (int k = 0; k < 1000; k++){ 65 g1.change(); 66 if (group[g1] == true){ 67 isloop = true; 68 break; 69 } 70 group[g1] = true; //一定要记得!!! 71 } 72 if (g1.iszero() == true){ 73 puts("ZERO"); 74 } 75 else { 76 puts("LOOP"); 77 } 78 bool isloop = false; 79 } 80 81 return 0; 82 }

骚年,加油奋斗吧,毕竟水题。



posted @ 2015-07-15 10:31  Shawn_Ji  阅读(465)  评论(0编辑  收藏  举报