Aes加密算法加密模式介绍
本文转自:https://www.jianshu.com/p/582d3a47729a
AES,高级加密标准(英语:Advanced Encryption Standard,缩写:AES),在密码学中又称Rijndael加密法,是美国联邦政府采用的一种区块加密标准。这个标准用来替代原先的DES,已经被多方分析且广为全世界所使用。严格地说,AES和Rijndael加密法并不完全一样(虽然在实际应用中二者可以互换),因为Rijndael加密法可以支持更大范围的区块和密钥长度:AES的区块长度固定为128 比特,密钥长度则可以是128,192或256比特;而Rijndael使用的密钥和区块长度可以是32位的整数倍,以128位为下限,256比特为上限。包括AES-ECB,AES-CBC,AES-CTR,AES-OFB,AES-CFB
简介
一般的加密通常都是块加密,如果要加密超过块大小的数据,就需要涉及填充和链加密模式,本文对对称加密和分组加密中的几种种模式进行一一分析(ECB、CBC、CFB、OFB,CTR)
电码本模式 Electronic Codebook Book (ECB)
概述
这种模式是将整个明文分成若干段相同的小段,然后对每一小段进行加密。
特点分析
优点:
- 简单;
- 有利于并行计算;
- 误差不会被传送;
缺点:
- 不能隐藏明文的模式;
- 可能对明文进行主动攻击;
代码演示
/** *@autho stardust *@time 2013-10-10 *@param 实现AES五种加密模式的测试 */ #include <iostream> using namespace std; //加密编码过程函数,16位1和0 int dataLen = 16; //需要加密数据的长度 int encLen = 4; //加密分段的长度 int encTable[4] = {1,0,1,0}; //置换表 int data[16] = {1,0,0,1,0,0,0,1,1,1,1,1,0,0,0,0}; //明文 int ciphertext[16]; //密文 //切片加密函数 void encode(int arr[]) { for(int i=0;i<encLen;i++) { arr[i] = arr[i] ^ encTable[i]; } } //电码本模式加密,4位分段 void ECB(int arr[]) { //数据明文切片 int a[4][4]; int dataCount = 0; //位置变量 for(int k=0;k<4;k++) { for(int t=0;t<4;t++) { a[k][t] = data[dataCount]; dataCount++; } } dataCount = 0;//重置位置变量 for(int i=0;i<dataLen;i=i+encLen) { int r = i/encLen;//行 int l = 0;//列 int encQue[4]; //编码片段 for(int j=0;j<encLen;j++) { encQue[j] = a[r][l]; l++; } encode(encQue); //切片加密 //添加到密文表中 for(int p=0;p<encLen;p++) { ciphertext[dataCount] = encQue[p]; dataCount++; } } cout<<"ECB加密的密文为:"<<endl; for(int t1=0;t1<dataLen;t1++) //输出密文 { if(t1!=0 && t1%4==0) cout<<endl; cout<<ciphertext[t1]<<" "; } cout<<endl; cout<<"---------------------------------------------"<<endl; }
密码分组链接模式 Cipher Block Chaining (CBC)
概述
这种模式是先将明文切分成若干小段,然后每一小段与初始块或者上一段的密文段进行异或运算后,再与密钥进行加密。
特点分析
优点:
- 不容易主动攻击,安全性好于ECB,适合传输长度长的报文,是SSL、IPSec的标准。
缺点:
- 不利于并行计算;
- 误差传递;
- 需要初始化向量IV
代码演示
#include <iostream>
using namespace std;
//加密编码过程函数,16位1和0
int dataLen = 16; //需要加密数据的长度
int encLen = 4; //加密分段的长度
int encTable[4] = {1,0,1,0}; //置换表
int data[16] = {1,0,0,1,0,0,0,1,1,1,1,1,0,0,0,0}; //明文
int ciphertext[16]; //密文
//切片加密函数
void encode(int arr[])
{
for(int i=0;i<encLen;i++)
{
arr[i] = arr[i] ^ encTable[i];
}
}
//CBC
//密码分组链接模式,4位分段
void CBC(int arr[])
{
//数据明文切片
int a[4][4];
int dataCount = 0; //位置变量
for(int k=0;k<4;k++)
{
for(int t=0;t<4;t++)
{
a[k][t] = data[dataCount];
dataCount++;
}
}
dataCount = 0;//重置位置变量
int init[4] = {1,1,0,0}; //初始异或运算输入
//初始异或运算
for(int i=0;i<dataLen;i=i+encLen)
{
int r = i/encLen;//行
int l = 0;//列
int encQue[4]; //编码片段
//初始化异或运算
for(int k=0;k<encLen;k++)
{
a[r][k] = a[r][k] ^ init[k];
}
//与Key加密的单切片
for(int j=0;j<encLen;j++)
{
encQue[j] = a[r][j];
}
encode(encQue); //切片加密
//添加到密文表中
for(int p=0;p<encLen;p++)
{
ciphertext[dataCount] = encQue[p];
dataCount++;
}
//变换初始输入
for(int t=0;t<encLen;t++)
{
init[t] = encQue[t];
}
}
cout<<"CCB加密的密文为:"<<endl;
for(int t1=0;t1<dataLen;t1++) //输出密文
{
if(t1!=0 && t1%4==0)
cout<<endl;
cout<<ciphertext[t1]<<" ";
}
cout<<endl;
cout<<"---------------------------------------------"<<endl;
}
//CBC
//密码分组链接模式,4位分段
void CCB(int arr[])
{
//数据明文切片
int a[4][4];
int dataCount = 0; //位置变量
for(int k=0;k<4;k++)
{
for(int t=0;t<4;t++)
{
a[k][t] = data[dataCount];
dataCount++;
}
}
dataCount = 0;//重置位置变量
int init[4] = {1,1,0,0}; //初始异或运算输入
//初始异或运算
for(int i=0;i<dataLen;i=i+encLen)
{
int r = i/encLen;//行
int l = 0;//列
int encQue[4]; //编码片段
//初始化异或运算
for(int k=0;k<encLen;k++)
{
a[r][k] = a[r][k] ^ init[k];
}
//与Key加密的单切片
for(int j=0;j<encLen;j++)
{
encQue[j] = a[r][j];
}
encode(encQue); //切片加密
//添加到密文表中
for(int p=0;p<encLen;p++)
{
ciphertext[dataCount] = encQue[p];
dataCount++;
}
//变换初始输入
for(int t=0;t<encLen;t++)
{
init[t] = encQue[t];
}
}
cout<<"CCB加密的密文为:"<<endl;
for(int t1=0;t1<dataLen;t1++) //输出密文
{
if(t1!=0 && t1%4==0)
cout<<endl;
cout<<ciphertext[t1]<<" ";
}
cout<<endl;
cout<<"---------------------------------------------"<<endl;
}
计算器模式Counter (CTR)
概述
计算器模式不常见,在CTR模式中, 有一个自增的算子,这个算子用密钥加密之后的输出和明文异或的结果得到密文,相当于一次一密。这种加密方式简单快速,安全可靠,而且可以并行加密,但是 在计算器不能维持很长的情况下,密钥只能使用一次 。CTR的示意图如下所示:
特点分析
优点:
- 无填
- 同明文不同密
- 每个块单独运算,适合并行运算。
缺点:
- 可能导致明文攻击。
代码演示
#include <iostream>
using namespace std;
//加密编码过程函数,16位1和0
int dataLen = 16; //需要加密数据的长度
int encLen = 4; //加密分段的长度
int encTable[4] = {1,0,1,0}; //置换表
int data[16] = {1,0,0,1,0,0,0,1,1,1,1,1,0,0,0,0}; //明文
int ciphertext[16]; //密文
//切片加密函数
void encode(int arr[])
{
for(int i=0;i<encLen;i++)
{
arr[i] = arr[i] ^ encTable[i];
}
}
//CTR
//计算器模式,4位分段
void CTR(int arr[])
{
//数据明文切片
int a[4][4];
int dataCount = 0; //位置变量
for(int k=0;k<4;k++)
{
for(int t=0;t<4;t++)
{
a[k][t] = data[dataCount];
dataCount++;
}
}
dataCount = 0;//重置位置变量
int init[4][4] = {{1,0,0,0},{0,0,0,1},{0,0,1,0},{0,1,0,0}}; //算子表
int l = 0; //明文切片表列
//初始异或运算
for(int i=0;i<dataLen;i=i+encLen)
{
int r = i/encLen;//行
int encQue[4]; //编码片段
//将算子切片
for(int t=0;t<encLen;t++)
{
encQue[t] = init[r][t];
}
encode(encQue); //算子与key加密
//最后的异或运算
for(int k=0;k<encLen;k++)
{
encQue[k] = encQue[k] ^ a[l][k];
}
l++;
//添加到密文表中
for(int p=0;p<encLen;p++)
{
ciphertext[dataCount] = encQue[p];
dataCount++;
}
}
cout<<"CTR加密的密文为:"<<endl;
for(int t1=0;t1<dataLen;t1++) //输出密文
{
if(t1!=0 && t1%4==0)
cout<<endl;
cout<<ciphertext[t1]<<" ";
}
cout<<endl;
cout<<"---------------------------------------------"<<endl;
}
密码反馈模式(Cipher FeedBack (CFB)
概述
特点分析
优点:
- 隐藏了明文模式;
- 分组密码转化为流模式;
- 可以及时加密传送小于分组的数据;
缺点:
- 不利于并行计算;
- 误差传送:一个明文单元损坏影响多个单元;
- 唯一的IV;。
代码演示
/** *@autho stardust *@time 2013-10-10 *@param 实现AES五种加密模式的测试 */ #include <iostream> using namespace std; //加密编码过程函数,16位1和0 int dataLen = 16; //需要加密数据的长度 int encLen = 4; //加密分段的长度 int encTable[4] = {1,0,1,0}; //置换表 int data[16] = {1,0,0,1,0,0,0,1,1,1,1,1,0,0,0,0}; //明文 int ciphertext[16]; //密文 //切片加密函数 void encode(int arr[]) { for(int i=0;i<encLen;i++) { arr[i] = arr[i] ^ encTable[i]; } } //CFB //密码反馈模式,4位分段 void CFB(int arr[]) { //数据明文切片,切成2 * 8 片 int a[8][2]; int dataCount = 0; //位置变量 for(int k=0;k<8;k++) { for(int t=0;t<2;t++) { a[k][t] = data[dataCount]; dataCount++; } } dataCount = 0; //恢复初始化设置 int lv[4] = {1,0,1,1}; //初始设置的位移变量 int encQue[2]; //K的高两位 int k[4]; //K for(int i=0;i<2 * encLen;i++) //外层加密循环 { //产生K for(int vk=0;vk<encLen;vk++) { k[vk] = lv[vk]; } encode(k); for(int k2=0;k2<2;k2++) { encQue[k2] = k[k2]; } //K与数据明文异或产生密文 for(int j=0;j<2;j++) { ciphertext[dataCount] = a[dataCount/2][j] ^ encQue[j]; dataCount++; } //lv左移变换 lv[0] = lv[2]; lv[1] = lv[3]; lv[2] = ciphertext[dataCount-2]; lv[3] = ciphertext[dataCount-1]; } cout<<"CFB加密的密文为:"<<endl; for(int t1=0;t1<dataLen;t1++) //输出密文 { if(t1!=0 && t1%4==0) cout<<endl; cout<<ciphertext[t1]<<" "; } cout<<endl; cout<<"---------------------------------------------"<<endl; }
输出反馈模式Output FeedBack (OFB)
概述
特点分析
优点:
- 同明文不同密文,分组密钥转换为流密码。
缺点:
- 串行运算不利并行
- 传输错误可能导致后续传输块错误。
代码演示
/** *@autho stardust *@time 2013-10-10 *@param 实现AES五种加密模式的测试 */ #include <iostream> using namespace std; //加密编码过程函数,16位1和0 int dataLen = 16; //需要加密数据的长度 int encLen = 4; //加密分段的长度 int encTable[4] = {1,0,1,0}; //置换表 int data[16] = {1,0,0,1,0,0,0,1,1,1,1,1,0,0,0,0}; //明文 int ciphertext[16]; //密文 //切片加密函数 void encode(int arr[]) { for(int i=0;i<encLen;i++) { arr[i] = arr[i] ^ encTable[i]; } } //OFB //输出反馈模式,4位分段 void OFB(int arr[]) { //数据明文切片,切成2 * 8 片 int a[8][2]; int dataCount = 0; //位置变量 for(int k=0;k<8;k++) { for(int t=0;t<2;t++) { a[k][t] = data[dataCount]; dataCount++; } } dataCount = 0; //恢复初始化设置 int lv[4] = {1,0,1,1}; //初始设置的位移变量 int encQue[2]; //K的高两位 int k[4]; //K for(int i=0;i<2 * encLen;i++) //外层加密循环 { //产生K for(int vk=0;vk<encLen;vk++) { k[vk] = lv[vk]; } encode(k); for(int k2=0;k2<2;k2++) { encQue[k2] = k[k2]; } //K与数据明文异或产生密文 for(int j=0;j<2;j++) { ciphertext[dataCount] = a[dataCount/2][j] ^ encQue[j]; dataCount++; } //lv左移变换 lv[0] = lv[2]; lv[1] = lv[3]; lv[2] = encQue[0]; lv[3] = encQue[1]; } cout<<"CFB加密的密文为:"<<endl; for(int t1=0;t1<dataLen;t1++) //输出密文 { if(t1!=0 && t1%4==0) cout<<endl; cout<<ciphertext[t1]<<" "; } cout<<endl; cout<<"---------------------------------------------"<<endl; }