Ubuntu+docker+tensorflow+opencv+tensorboard 安装
Centos7安装TensorFlow
1.1.安装Centos7
https://blog.csdn.net/monkey131499/article/details/51169210
2.安装Python3
查看当前Python版本信息,命令(python -v),Centos7默认的Python版本是2.7.5
下载Python3:
wget https://www.python.org/ftp/python/3.4.1/Python-3.4.1.tgz
解压编译安装
# tar zxvf Python-3.4.1.tgz
# cd Python-3.4.1
# ./configure
# make
# make install
本虚拟机不需要覆盖版本
若要覆盖
,。看文档
3.安装Python-pip
https://blog.csdn.net/yulei_qq/article/details/52984334
4.安装TensorFlow
https://blog.csdn.net/monkey131499/article/details/51169210
centos 7 下搭建 tensorflow+keras 深度学习环境
https://blog.csdn.net/huangfei711/article/details/78606159
Linux下安装Anaconda
https://jingyan.baidu.com/article/20b68a8893ae50796cec62b4.html
Ubuntu安装
- Ubuntu安装
https://jingyan.baidu.com/article/3c48dd348bc005e10be358eb.html
- ubuntu下如何安装Tensorflow
https://www.cnblogs.com/tsingke/p/7171270.html
- Ubuntu16.04下Anaconda安装完成后conda:找不到命令
https://blog.csdn.net/xianglao1935/article/details/80510494
- 4在anaconda中安装、切换python的版本:2.7~3.6
.https://blog.csdn.net/x_ym/article/details/78995472
- 装Docker
https://docs.docker.com/install/linux/docker-ce/ubuntu/ 最新
或者
https://blog.csdn.net/yxgxy270187133/article/details/48492937 学习版
用 docker -v 测试
用 sudo docker run hello-world 测试
- 基于Docker的TensorFlow 环境搭建
https://www.cnblogs.com/dyufei/p/8027764.html
或者:https://www.jb51.net/article/135441.htm
https://www.jb51.net/article/135441.htm 使用说明
- 把Docker安装为自启动服务
https://blog.csdn.net/pipisorry/article/details/50803028
- docker + jupyter +tensorflow +opencv +tensorboard:
Tensorflow+opencv 组合镜像:
https://blog.csdn.net/chenming_hnu/article/details/70184543
组合镜像+tensorboard:
参考:https://blog.csdn.net/qq_29831979/article/details/79453641
docker run --name my-tf-1 -dit -p 8888:8888 -p 6006:6006 tensorflow:tensorflowCV 即可!!
打开8888网站,然后会需要token,返回终端输入 sudo docker my-tf-1查看
这一步,可以通过
①# tensorboard --inspect --logdir="/notebooks/graph/dataflow" 看能否打开文件
②检查6006 的路径是否正确
下面的不对,可用于anaconda:
组合镜像+tensorboard:
https://www.cnblogs.com/dyufei/p/8094507.html
命令:
docker volume create --name notebooks
docker volume create --name logs
sudo mkdir /home/dyufei/docker/notebooks
sudo mkdir /home/dyufei/docker/logs