Fork me on GitHub

java方式实现堆排序

一、堆排序和堆相关概念描述

  堆排序是指利用这种数据结构所设计的一种排序算法。堆是一个近似完全二叉树的结构,并同时满足堆的性质:即子结点的值总是小于(或者大于)它的父节点,若子结点的值总是小于它的父节点这堆叫大顶堆,子结点的值总是大于它的父节点这种堆叫小顶堆。若二叉树的深度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,第 h 层所有的结点都连续集中在最左边,这就是完全二叉树。如果完全二叉树有n个节点,那么有n/2(n为偶数)个叶子节点或(n+1)/2(n为奇数)个叶子节点。

 

二、基本思想

  先将数组array[0,...,n-1]构造成一个堆,即将array[0,...,n-1]看成是一颗完全二叉树的顺序存储结构。然后将堆调整为大顶堆(顺序排序),具体步骤如下,先找到堆的非叶子节点array[i](当n为偶数时(n-1)/2<=i<=n-1,当n为奇数时(n-2)/2<=i<=n-1),再找到这个非叶子节点的左右孩子节点(array[2i+1],array[2i+2]),将非叶子节点的值与左右孩子节点的值比较,如果非叶子节点的值小于左右孩子节点值的最大值,把最大孩子节点的最大值赋给非叶子节点,再继续找孩子节点的孩子节点,重复上述比较操作,直到找不到孩子节点为直,当所有非叶子节点重复上述操作完成时,那么这个堆就是大顶堆了。然后将堆顶元素与堆尾元素交换,将堆尾元素移除,将剩余元素组成的堆继续重复调整为大堆,交换堆顶堆尾元素,移除堆尾元素,直到剩余元素组成的堆只有一个元素为止。

三、实现步骤

  1. 构建初始堆,将待排序列构成一个大顶堆(或者小顶堆),升序大顶堆,降序小顶堆;
  2. 将堆顶元素与堆尾元素交换,移除堆尾元素。
  3. 重新构建大顶堆。
  4. 重复2~3,直到待排序列中只剩下一个元素(堆顶元素)。

四、案例分析

   以数组{6,5,3,1,8,7}为例如下图:

  

 

 

 

 

 

 

五、代码实现

public class JavaSort {
    public static void main(String[] args) {
        int a [] =new int []{6,5,3,1,8,7};
        System.out.println("排序前的数组:"+Arrays.toString(a));
        heapSort(a);
        System.out.println("排序后的数组:"+Arrays.toString(a));
    }
    

    

        /**
         * 
         * @param ary 待排序列
         */
        private static void heapSort(int[] ary) {
            int len=ary.length;
            if (len<=0) {
                System.out.println("数组长度不能小于等于0");
            } else if (len==1) {
            }  else {
                int firstIndex=len-1;
                if(len%2==0) {
                    firstIndex=len-2;//第一个非叶子节点位置,如果数组长度为偶数,非叶子节点为length-2/2,否则叶子长度为length-1/2.
                } 
                 for (int i = firstIndex / 2; i >= 0; i--) {
                     //从第一个非叶子结点从下至上,从右至左调整结构,把堆调整为大顶堆。
                     adjustHeap(ary, i, ary.length);
                 }
                System.out.println("第一次构造的大顶堆"+Arrays.toString(ary));

                 //调整堆结构+交换堆顶元素与末尾元素
                 for (int i = ary.length - 1; i > 0; i--) {
                     //将堆顶元素与末尾元素进行交换
                     int temp = ary[i];
                     ary[i] = ary[0];
                     ary[0] = temp;
                     //将数组长度-1,移除堆尾元素,将堆顶元素进行调整,就可以将堆调整为大顶堆
                     System.out.println("要移除的堆尾元素:"+ary[i]);
                     System.out.println("移除堆尾元素后,堆为"+Arrays.toString(Arrays.copyOfRange(ary, 0, i)));
                     adjustHeap(ary, 0, i);
                     System.out.println("移除堆尾元素后,大顶堆堆为"+Arrays.toString(Arrays.copyOfRange(ary, 0, i)));

                 }
                 
            }
            
            
           
        }

        /**
         * 调整完全二叉树的非叶子节点,使得它们的节点值大于左右孩子节点的值,左右孩子重复上述操作,直到找不到孩子节点。
         * @param ary 要调整的数组
         * @param parent 要调整的节点
         * @param length 要调整的数组长度
         */
        private static void adjustHeap(int[] ary, int parent, int length) {
            //将temp作为父节点
            int temp = ary[parent];
            //左孩子
            int lChild = 2 * parent + 1;

            while (lChild < length) {
                //右孩子
                int rChild = lChild + 1;
                // 如果有右孩子结点,并且右孩子结点的值大于左孩子结点,则选取右孩子结点
                if (rChild < length && ary[lChild] < ary[rChild]) {
                    lChild++;
                }

                // 如果父结点的值已经大于孩子结点的值,则直接结束
                if (temp >= ary[lChild]) {
                    break;
                }

                // 把孩子结点的值赋给父结点
                ary[parent] = ary[lChild];

                //选取孩子结点的左孩子结点,继续向下找
                parent = lChild;
                lChild = 2 * lChild + 1;
            }
            ary[parent] = temp;
            
        }
    
}

五、运行结果

六、运行结果

  空间复杂度:o(1)。

  时间复杂度:建堆:o(n),每次调整o(log n),故最好、最坏、平均情况下:o(n*logn)。

  稳定性:不稳定。

 

posted @ 2020-03-14 22:58  carrykai  阅读(388)  评论(0编辑  收藏  举报