Spark job 部署模式


 

  Spark job 的部署有两种模式,Client && Cluster
  spark-submit .. --deploy-mode client | cluster

 

  【上传 Jar 包】

[centos@s101 ~]$ hdfs dfs -put myspark.jar data

 

  【Client】
  默认值,Driver 运行在 Client 端主机上。

spark-submit --class com.share.scala.mr.TaggenCluster --master spark://s101:7077 myspark.jar /user/centos/temptags.txt

 

  【cluster】
  Driver 运行在某个 Worker 节点上。客户端值负责提交 job。

spark-submit --class com.share.scala.mr.TaggenCluster --master spark://s101:7077 --deploy-mode cluster hdfs://mycluster/user/centos/data/myspark.jar /user/centos/temptags.txt

 

 

[centos@s101 ~]$ xcall.sh jps
==================== s101 jps ===================
2981 Master
2568 NameNode
2889 DFSZKFailoverController
3915 Jps
==================== s102 jps ===================
2961 CoarseGrainedExecutorBackend
2450 Worker
2325 JournalNode
2246 DataNode
2187 QuorumPeerMain
3005 Jps
==================== s103 jps ===================
2457 Worker
2331 JournalNode
2188 QuorumPeerMain
3292 CoarseGrainedExecutorBackend
2253 DataNode
3310 Jps
==================== s104 jps ===================
2193 QuorumPeerMain
2981 DriverWrapper
3094 Jps
2455 Worker
2328 JournalNode
2252 DataNode
3038 CoarseGrainedExecutorBackend

 

 

[centos@s105 /soft/spark-2.1.0-bin-hadoop2.7/bin]$ ./spark-submit --class com.share.scala.mr.TaggenCluster --master spark://s101:7077 --deploy-mode cluster hdfs://s101/user/centos/data/myspark.jar /user/centos/temptags.txt

 

 

 


 

posted @ 2018-10-12 21:20  山间一棵松  阅读(291)  评论(0编辑  收藏  举报