[Hive_add_11] Hive 使用 UDTF 实现日志降维
0. 说明
对日志进行降维处理,将日志分为几个小表
通过编写 UDTF ,对日志降维,将日志聚合体相关字段抽取出来,形成新表。
1. 操作流程
1.0 日志部分内容
1532868065.518#192.168.23.1#1532868067548#200#{\"appChannel\":\"appstore\",\"appErrorLogs\":
[{\"createdAtMs\":1530455040000,\"errorBrief\":\"at cn.lift.appIn.control.CommandUtil.getInfo(CommandUtil.java:67)\",
\"errorDetail\":\"at cn.lift.dfdfdf.control.CommandUtil.getInfo(CommandUtil.java:67) at sun.reflect.DelegatingMethodAccessorImpl.
invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:606)\"},{\"createdAtMs\":1530393180000,
\"errorBrief\":\"at cn.lift.appIn.control.CommandUtil.getInfo(CommandUtil.java:67)\",\"errorDetail\":
\"at cn.lift.dfdfdf.control.CommandUtil.getInfo(CommandUtil.java:67)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)\"}],\"appEventLogs\":[{\"createdAtMs\":1530412800000,\"eventId\":
\"share\",\"logType\":\"event\",\"mark\":\"4\",\"musicID\":\"傲红尘\"}],\"appPageLogs\":[{\"createdAtMs\":1530449520000,
\"logType\":\"page\",\"nextPage\":\"list.html\",\"pageId\":\"list.html\",\"pageViewCntInSession\":0,\"visitIndex\":\"2\"}],
\"appPlatform\":\"ios\",\"appStartupLogs\":[{\"brand\":\"联想\",\"carrier\":\"中国联通\",\"country\":\"china\",\"createdAtMs\":
1530385560000,\"logType\":\"startup\",\"network\":\"cell\",\"province\":\"hebei\",\"screenSize\":\"960 * 640\"},
{\"brand\":\"魅族\",\"carrier\":\"中国铁通\",\"country\":\"america\",\"createdAtMs\":1530412860000,\"logType\":\"startup\",
\"network\":\"3g\",\"province\":\"guangxi\",\"screenSize\":\"480 * 320\"}],\"appUsageLogs\":[{\"createdAtMs\":1530379200000,
\"logType\":\"usage\",\"singleDownloadTraffic\":\"12800\",\"singleUploadTraffic\":\"128\",\"singleUseDurationSecs\":\"123\"}],
\"appVersion\":\"1.0.0\",\"deviceId\":\"Device000099\",\"deviceStyle\":\"oppo 1\",\"osType\":\"1.4.0\"}
1.1 创建 logAgg表
创建 logAgg表,分区表 => year, month, day
create table logAgg(serverTime string,remoteIp string,clientTime string,status string, json string) partitioned by(year string, month string, day string) row format delimited fields terminated by '#' ;
1.2 load 数据到 logAgg表
load data local inpath '/home/centos/files/2018-07-01.log' into table logagg partition(year='2018',month='07',day='01');
1.3 降维处理
1. 代码编写
2. 上传并同步
先打包再放入 /soft/hive/lib 中
cp /soft/hive/lib/myhive-1.0-SNAPSHOT.jar /soft/hadoop/share/hadoop/common/lib/
xsync.sh /soft/hadoop/share/hadoop/common/lib/myhive-1.0-SNAPSHOT.jar
3. 注册临时函数
create temporary function parseEvent as 'com.share.udtf.ParseEvent';
4.测试
select parseEvent(json) from logAgg;
1.4 创建 logEvent表
create table logevent(deviceId string, createdAtMs string, eventId string, logType string , mark string, musicID string) stored as parquet tblproperties('parquet.compression'='GZIP');
1.5 转储
insert into logevent select parseEvent(json) from logagg where year='2018' and month='07' and day='01';
1.6 对 logEvent表进行操作
1. 计算每个用户对每首歌的评分
select deviceid, musicid, sum(cast(mark as int)) as sum from logevent where musicId is not null group by deviceid, musicid;
2. 计算每个用户对每首歌的评分与最高评分
select deviceid , musicid, sum, max(sum)over(partition by deviceid) as sum2 from ( select deviceid, musicid, sum(cast(mark as int)) as sum from logevent where musicId is not null group by deviceid, musicid )a;
3. 使用 sql 计算出,每个用户最喜欢(评分最高)的歌曲,及其评分
select deviceid , musicid, sum from ( select deviceid , musicid, sum, max(sum)over(partition by deviceid) as sum2 from ( select deviceid, musicid, sum(cast(mark as int)) as sum from logevent where musicId is not null group by deviceid, musicid )a )b where sum=sum2 ;
2. 附加内容
2.1 Hive 加载 jar 方式
1. 将 jar 放在 Hive 的 lib 下,并重启 Hive
/soft/hive/lib
2. 通过配置文件指定 jar,并重启 Hive
hive.aux.jars.path=/x/x/x.jar
3. 临时加载 jar
hive> add jar /x/x/x.jar
2.2 注册函数方法
1. create function as ''; // 永久
2. create temporary function as ''; // 临时
3. create function xxx as '' using jar 'hdfs://mycluster/xxx.jar'; // 将 jar 包放入 HDFS 中,避免重启
且将新火试新茶,诗酒趁年华。