[Hive_12] Hive 的自定义函数
0. 说明
UDF //user define function
//输入单行,输出单行,类似于 format_number(age,'000')
UDTF //user define table-gen function
//输入单行,输出多行,类似于 explode(array);
UDAF //user define aggr function
//输入多行,输出单行,类似于 sum(xxx)
Hive 通过 UDF 实现对 temptags 的解析
1. UDF
1.1 代码示例
1.2 用户自定义函数的使用
1. 将 Hive 自定义函数打包并发送到 /soft/hive/lib 下
2. 重启 Hive
3. 注册函数
# 永久函数 create function myudf as 'com.share.udf.MyUDF'; # 临时函数 create temporary function myudf as 'com.share.udf.MyUDF';
1.3 Demo
Hive 通过 UDF 实现对 temptags 的解析
0. 准备数据
1. 建表
create table temptags(id int,json string) row format delimited fields terminated by '\t';
2. 加载数据
load data local inpath '/home/centos/files/temptags.txt' into table temptags;
3. 代码编写
4. 打包
5. 添加 fastjson-1.2.47.jar & myhive-1.0-SNAPSHOT.jar 到 /soft/hive/lib 中
6. 重启 Hive
7. 注册临时函数
create temporary function parsejson as 'com.share.udf.ParseJson';
8. 测试
select id ,parsejson(json) as tags from temptags;
# 将 id 和 tag 炸开 select id, tag from temptags lateral view explode(parsejson(json)) xx as tag; # 开始统计每个商家每个标签个数 select id, tag, count(*) as count
from (select id, tag from temptags lateral view explode(parsejson(json)) xx as tag) a
group by id, tag; # 进行商家内标签数的排序 select id, tag , count, row_number()over(partition by id order by count desc) as rank
from (select id, tag, count(*) as count from (select id, tag from temptags lateral view explode(parsejson(json)) xx as tag) a
group by id,tag) b ; # 将标签和个数进行拼串,取得前 10 标签数 select id, concat(tag,'_',count)
from (select id, tag , count, row_number()over(partition by id order by count desc) as rank
from (select id, tag, count(*) as count from (select id, tag from temptags lateral view explode(parsejson(json)) xx as tag) a
group by id,tag) b )c
where rank<=10; #聚合拼串 //concat_ws(',', List<>) //collect_set(name) 将所有字段变为数组,去重 //collect_list(name) 将所有字段变为数组,不去重 select id, concat_ws(',',collect_set(concat(tag,'_',count))) as tags
from (select id, tag , count, row_number()over(partition by id order by count desc) as rank
from (select id, tag, count(*) as count from (select id, tag from temptags lateral view explode(parsejson(json)) xx as tag) a
group by id,tag) b )c where rank<=10 group by id;
1.4 虚列:lateral view
123456 味道好_10,环境卫生_9
id tags
1 [味道好,环境卫生] => 1 味道好
1 环境卫生
select name, workplace from employee lateral view explode(work_place) xx as workplace;
1.5 类找不到异常
缺少 jar 包导致的: 类找不到异常的解决方案
问题描述
Caused by: java.lang.ClassNotFoundException: com.share.udf.ParseJson
解决方案
1. 将 fastjson 和 myhive.jar 放在 /soft/hadoop/share/hadoop/common/lib 下
cp /soft/hive/lib/myhive-1.0-SNAPSHOT.jar /soft/hadoop/share/hadoop/common/lib/ cp /soft/hive/lib/fastjson-1.2.47.jar /soft/hadoop/share/hadoop/common/lib/
2. 同步到其他节点
xsync.sh /soft/hadoop/share/hadoop/common/lib/fastjson-1.2.47.jar xsync.sh /soft/hadoop/share/hadoop/common/lib/myhive-1.0-SNAPSHOT.jar
3. 重启 Hadoop 和 Hive
stop-all.sh
hive
2. UDTF
2.0 说明
Hive 实现 Word Count 通过以下两种方式
array => explode
string => split => explode
现在直接通过 UDTF 实现 WordCount
string => myudtf
2.1 代码编写
2.2 打包
将 myhive-1.0-SNAPSHOT.jar 添加到 /soft/hive/lib 中
2.3 重启 Hive
2.4 注册临时函数
create function myudtf as 'com.share.udtf.MyUDTF';
2.5 测试
select myudtf(line) from wc2;
2.6 流程分析
1. 通过 initialize的参数(方法参数)类型或参数个数
2. 返回输出表的表结构(字段名+字段类型)
3. 通过 process函数,取出参数值
4. 进行处理后通过 forward函数 将其输出