使用tensorflow搭建一个神经网络,实现一个分类问题
工欲善其事必先利其器,首先,我们来说说关于环境搭建的问题。
安装的方法有一万种,但是我还是推荐下面这种安装方法,简单方便,不会出现很多莫名其妙的问题。
Anaconda + Jupyter + tensorflow
安装的具体流程见下面的视频链接:
https://www.youtube.com/watch?v=G2GqLWOERjQ (需要科学上网)
数据集
数据集采用的比利时这个国家的交通标志。从 https://btsd.ethz.ch/shareddata/ 可以获得数据, BelgiumTSC_Training (171.3MBytes)和 BelgiumTSC_Testing (76.5MBytes)分别代表我们的训练数据和测试数据。
数据集的说明
Trainging文件夹中有62个文件夹,每一个文件夹中若干张图片,文件夹中图片就是我们的属性,标签是文件夹的名字。
我们的训练目标就是,给定一张图片,判断这张图片属于哪一个文件夹(分类问题)。
上干货,代码!
-加载数据,并创建训练集的属性和标签
def load_data(data_dir):
# Get all subdirectories of data_dir. Each represents a label.
directories = [d for d in os.listdir(data_dir)
if os.path.isdir(os.path.join(data_dir, d))]
# print(directories)
# Loop through the label directories and collect the data in
# two lists, labels and images.
labels = []
images = []
for d in directories:
label_dir = os.path.join(data_dir, d)
file_names = [os.path.join(label_dir, f)
for f in os.listdir(label_dir)
if f.endswith(".ppm")]
for f in file_names:
images.append(data.imread(f))
labels.append(int(d))
return images, labels
ROOT_PATH = "E:/machineLearning/tensorflow/data/" #这里需要根据自己数据存放的路径进行修改
train_data_dir = os.path.join(ROOT_PATH, "BelgiumTSC_Training/Training")
test_data_dir = os.path.join(ROOT_PATH, "BelgiumTSC_Testing/Testing")
images, labels = load_data(train_data_dir)
images_array = np.array(images)
labels_array = np.array(labels)
# Print the `images` dimensions
print(images_array.ndim)
# Print the number of `images`'s elements
print(images_array.size)
# Print the first instance of `images`
# print(images_array[0])
# Print the `labels` dimensions
print(labels_array.ndim)
# Print the number of `labels`'s elements
print(labels_array.size)
# Count the number of labels
print(len(set(labels_array)))
-特征抽取
缩放图像:
# Resize images
images32 = [transform.resize(image, (28, 28)) for image in images]
images32 = np.array(images32)
print(images32[0])
将彩色图像灰度化
for i in range(len(traffic_signs)):
plt.subplot(1, 4, i+1)
plt.axis('off')
plt.imshow(images32[traffic_signs[i]], cmap="gray")
plt.subplots_adjust(wspace=0.5)
plt.show()
print(images32.shape)
-使用Tensorflow训练一个神经网络
import tensorflow as tf
x = tf.placeholder(dtype = tf.float32, shape = [None, 28, 28])
y = tf.placeholder(dtype = tf.int32, shape = [None])
images_flat = tf.contrib.layers.flatten(x)
logits = tf.contrib.layers.fully_connected(images_flat, 62, tf.nn.relu)
loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels = y, logits = logits))
train_op = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)
correct_pred = tf.argmax(logits, 1)
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
print("images_flat: ", images_flat)
print("logits: ", logits)
print("loss: ", loss)
print("predicted_labels: ", correct_pred)
运行神经网络
sess = tf.Session()
sess.run(tf.global_variables_initializer())
for i in range(201):
print('EPOCH', i)
_, accuracy_val = sess.run([train_op, accuracy], feed_dict={x: images32, y: labels})
if i % 10 == 0:
print("Loss: ", loss)
print('DONE WITH EPOCH')
执行神经网络
# Pick 10 random images
sample_indexes = random.sample(range(len(images32)), 10)
sample_images = [images32[i] for i in sample_indexes]
sample_labels = [labels[i] for i in sample_indexes]
# Run the "predicted_labels" op.
predicted = sess.run([correct_pred], feed_dict={x: sample_images})[0]
# Print the real and predicted labels
print(sample_labels)
print(predicted)
-展示预测结果
# Display the predictions and the ground truth visually.
fig = plt.figure(figsize=(10, 10))
for i in range(len(sample_images)):
truth = sample_labels[i]
prediction = predicted[i]
plt.subplot(5, 2,1+i)
plt.axis('off')
color='green' if truth == prediction else 'red'
plt.text(40, 10, "Truth: {0}\nPrediction: {1}".format(truth, prediction),
fontsize=12, color=color)
plt.imshow(sample_images[i])
plt.show()
-预测测试集
# Load the test data
test_images, test_labels = load_data(test_data_dir)
# Transform the images to 28 by 28 pixels
test_images28 = [transform.resize(image, (28, 28)) for image in test_images]
# Convert to grayscale
from skimage.color import rgb2gray
test_images28 = rgb2gray(np.array(test_images28))
# Run predictions against the full test set.
predicted = sess.run([correct_pred], feed_dict={x: test_images28})[0]
# Calculate correct matches
match_count = sum([int(y == y_) for y, y_ in zip(test_labels, predicted)])
# Calculate the accuracy
accuracy = match_count / len(test_labels)
# Print the accuracy
print("Accuracy: {:.3f}".format(accuracy))
-关闭session
sess.close()
预测的准确率大概是57.8%