hadoop streaming多路输出方法和注意点(附超大数据diff对比源码)

简介

hadoop 支持reduce多路输出的功能,一个reduce可以输出到多个part-xxxxx-X文件中,其中X是A-Z的字母之一,程序在输出<key,value>对的时候,在value的后面追加"#X"后缀,比如#A,输出的文件就是part-00000-A,不同的后缀可以把key,value输出到不同的文件中,方便做输出类型分类, #X仅仅用做指定输出文件后缀, 不会体现到输出的内容中

使用方法

启动脚本中需要指定-outputformat org.apache.hadoop.mapred.lib.SuffixMultipleTextOutputFormat或者-outputformat org.apache.hadoop.mapred.lib.SuffixMultipleSequenceFileOutputFormat, 输出就会按照多路输出的方式进行分文件输出

所有标准输出的value中都要加上 #X后缀,X代表A-Z, 不然会报invalid suffix错误 

简单示例如下:

复制代码
$HADOOP_HOME_PATH/bin/hadoop streaming \
      -Dhadoop.job.ugi="$HADOOP_JOB_UGI" \
      -file ./map.sh \
      -file ./red.sh \
      -file ./config.sh \
      -mapper "sh -x map.sh" \
      -reducer "sh -x red.sh" \
      -input $NEW_INPUT_PATH \
      -input $OLD_INPUT_PATH \
      -output  $OUTPUT_PATH \
      -jobconf stream.num.map.output.key.fields=1 \
      -partitioner org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner \
      -outputformat org.apache.hadoop.mapred.lib.SuffixMultipleTextOutputFormat \
      -jobconf mapred.job.name="test-shapherd-dist-diff" \
      -jobconf mapred.job.priority=HIGH \
      -jobconf mapred.job.map.capacity=100 \
      -jobconf mapred.job.reduce.capacity=100 \
      -jobconf mapred.reduce.tasks=3
复制代码

在red脚本中可以所以的输出都加上后缀, 这样输出就是分part的了,比如大数据diff对比的脚本

map.sh如下:

  

red.sh如下:

  

  

我的两个大数据没有diff, 所以输出就是:

part-00000-C
part-00000-D
part-00000-E
part-00001-C
part-00001-D
part-00001-E
part-00002-C
part-00002-D
part-00002-E

没有A和B结尾的

注意事项

  • 多路输出最多支持26路, 也就是字母只能是A-Z范围。
  • reduce的输入key和value的分隔符默认是\t, 如果输出中没有\t,reduce脚本会把整行当作key, value就是空的,这时如果加了#X,会报invalid suffix错误,因为#X作为了key的一部分,这种问题一种是保证你的key和value是按照\t分隔的, 一种是指定自己想要的分隔符。

 

 

posted @   ShaPherD  阅读(10925)  评论(0编辑  收藏  举报
编辑推荐:
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
阅读排行:
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 单线程的Redis速度为什么快?
· 展开说说关于C#中ORM框架的用法!
· SQL Server 2025 AI相关能力初探
· Pantheons:用 TypeScript 打造主流大模型对话的一站式集成库
点击右上角即可分享
微信分享提示