HBase 优化
HBase 优化
表优化
在使用List Put写入的时候可能会丢失一些数据,包括读写的时候都有可能存在丢书数据的情况
表切分
默认的表是存储再同一个Region上面的,当表太大的时候,表会自动的切分到其他的Region上面。
手动切分
# 手动的切分表名
>split ‘表名’
这样当数据太大的时候可以完成对其他的RegionServer上面,官方文档
public static boolean createTable(HBaseAdmin admin, HTableDescriptor table, byte[][] splits)
throws IOException {
try {
admin.createTable(table, splits);
return true;
} catch (TableExistsException e) {
logger.info("table " + table.getNameAsString() + " already exists");
// the table already exists...
return false;
}
}
public static byte[][] getHexSplits(String startKey, String endKey, int numRegions) { //start:001,endkey:100,10region [001,010]
[011,020]
byte[][] splits = new byte[numRegions-1][];
BigInteger lowestKey = new BigInteger(startKey, 16);
BigInteger highestKey = new BigInteger(endKey, 16);
BigInteger range = highestKey.subtract(lowestKey);
BigInteger regionIncrement = range.divide(BigInteger.valueOf(numRegions));
lowestKey = lowestKey.add(regionIncrement);
for(int i=0; i < numRegions-1;i++) {
BigInteger key = lowestKey.add(regionIncrement.multiply(BigInteger.valueOf(i)));
byte[] b = String.format("%016x", key).getBytes();
splits[i] = b;
}
return splits;
}
Row Key
HBase中row key用来检索表中的记录,支持以下三种方式:
· 通过单个row key访问:即按照某个row key键值进行get操作;
· 通过row key的range进行scan:即通过设置startRowKey和endRowKey,在这个范围内进行扫描;
· 全表扫描:即直接扫描整张表中所有行记录。【严禁使用】
在HBase中,row key可以是任意字符串,最大长度64KB,实际应用中一般为10~100bytes,存为byte[]字节数组,一般设计成定长的。
row key是按照字典序存储,因此,设计row key时,要充分利用这个排序特点,将经常一起读取的数据存储到一块,将最近可能会被访问的数据放在一块。
1、 越小越好
2、 Rowkey的设计是要根据实际业务来 【row key 是检索的条件方式】
3、 散列性
a) 取反 001 002 100 200
b) Hash
column families
HBase currently does not do well with anything above two or three column families so keep the number of column families in your schema low. Currently, flushing is done on a per Region basis so if one column family is carrying the bulk of the data bringing on flushes, the adjacent families will also be flushed even though the amount of data they carry is small. When many column families exist the flushing interaction can make for a bunch of needless i/o (To be addressed by changing flushing to work on a per column family basis). In addition, compactions triggered at table/region level will happen per store too.
HBase当前不能很好地处理超过两个或三个列族的任何事物,因此请保持架构中列族的数量少。当前,刷新是在每个区域的基础上进行的,因此,如果一个列族正在承载大量要进行刷新的数据,即使相邻族族携带的数据量很小,也将对其进行刷新。当存在许多列系列时,冲洗交互可以产生一堆不必要的I / O(通过更改冲洗以在每个列系列的基础上解决)。此外,在表/区域级别触发的压缩也将在每个商店中发生。
Try to make do with one column family if you can in your schemas. Only introduce a second and third column family in the case where data access is usually column scoped; i.e. you query one column family or the other but usually not both at the one time.
如果可以,请尝试使用一个列族。仅在通常以列为范围的数据访问的情况下才引入第二和第三列族。即,您查询一个列族或另一个列族,但一次却不是两个都查询。
因为某个column family在flush的时候,它邻近的column family也会因关联效应被触发flush,最终导致系统产生更多的I/O。
特别是两个列族的数据差距比较大的时候,当一个列族达到溢写的时候,另一个列族才达到10%左右的溢写内存,两个列族会同时的溢写,这样对少的数据的另一个列族会产生很多的小文件,从而使得网络的IO增加
Cardinality of ColumnFamilies
Where multiple ColumnFamilies exist in a single table, be aware of the cardinality (i.e., number of rows). If ColumnFamilyA has 1 million rows and ColumnFamilyB has 1 billion rows, ColumnFamilyA’s data will likely be spread across many, many regions (and RegionServers). This makes mass scans for ColumnFamilyA less efficient.
在单个表中存在多个ColumnFamilies的地方,请注意基数(即行数)。如果ColumnFamilyA具有100万行,而ColumnFamilyB具有10亿行,则ColumnFamilyA的数据可能会分布在许多区域(以及RegionServers)中。这使得对ColumnFamilyA进行批量扫描的效率较低。
In Memory
创建表的时候,可以通过HColumnDescriptor.setInMemory(true)将表放到RegionServer的缓存中,保证在读取的时候被cache命中。
Max Version
创建表的时候,可以通过HColumnDescriptor.setMaxVersions(int maxVersions)设置表中数据的最大版本,如果只需要保存最新版本的数据,那么可以设置setMaxVersions(1)。
Time To Live
创建表的时候,可以通过HColumnDescriptor.setTimeToLive(int timeToLive)设置表中数据的存储生命期,过期数据将自动被删除,例如如果只需要存储最近两天的数据,那么可以设置setTimeToLive(2 * 24 * 60 * 60)。
HColumnDescriptor family = new HColumnDescr iptor ("cf" .getBytes ()) ;
family.setInMemory (inMemory) ;
family.se tMaxVersions (maxVersions) ;
family.setMinVersions (minVersions) ;
family.setBlocksize (s);
Compact & Split
在HBase中,数据在更新时首先写入WAL 日志(HLog)和内存(MemStore)中,MemStore中的数据是排序的,当MemStore累计到一定阈值时,就会创建一个新的MemStore,并且将老的MemStore添加到flush队列,由单独的线程flush到磁盘上,成为一个StoreFile。于此同时, 系统会在zookeeper中记录一个redo point,表示这个时刻之前的变更已经持久化了(minor compact)。
StoreFile是只读的,一旦创建后就不可以再修改。因此Hbase的更新其实是不断追加的操作。当一个Store中的StoreFile达到一定的阈值后,就会进行一次合并(major compact),将对同一个key的修改合并到一起,形成一个大的StoreFile,当StoreFile的大小达到一定阈值后,又会对 StoreFile进行分割(split),等分为两个StoreFile。
由于对表的更新是不断追加的,处理读请求时,需要访问Store中全部的StoreFile和MemStore,将它们按照row key进行合并,由于StoreFile和MemStore都是经过排序的,并且StoreFile带有内存中索引,通常合并过程还是比较快的。
实际应用中,可以考虑必要时手动进行major compact,将同一个row key的修改进行合并形成一个大的StoreFile。同时,可以将StoreFile设置大些,减少split的发生。
hbase为了防止小文件(被刷到磁盘的menstore)过多,以保证保证查询效率,hbase需要在必要的时候将这些小的store file合并成相对较大的store file,这个过程就称之为compaction。在hbase中,主要存在两种类型的compaction:minor compaction和major compaction。
minor compaction:的是较小、很少文件的合并。
major compaction 的功能是将所有的store file合并成一个,触发major compaction的可能条件有:major_compact 命令、majorCompact() API、region server自动运行(相关参数:hbase.hregion.majoucompaction 默认为24 小时、hbase.hregion.majorcompaction.jetter 默认值为0.2 防止region server 在同一时间进行major compaction)。
hbase.hregion.majorcompaction.jetter参数的作用是:对参数hbase.hregion.majoucompaction 规定的值起到浮动的作用,假如两个参数都为默认值24和0,2,那么major compact最终使用的数值为:19.2~28.8 这个范围。
1、 关闭自动major compaction
2、 手动编程major compaction
Timer类,contab
minor compaction的运行机制要复杂一些,它由一下几个参数共同决定:
hbase.hstore.compaction.min :默认值为 3,表示至少需要三个满足条件的store file时,minor compaction才会启动
hbase.hstore.compaction.max 默认值为10,表示一次minor compaction中最多选取10个store file
hbase.hstore.compaction.min.size 表示文件大小小于该值的store file 一定会加入到minor compaction的store file中
hbase.hstore.compaction.max.size 表示文件大小大于该值的store file 一定会被minor compaction排除
hbase.hstore.compaction.ratio 将store file 按照文件年龄排序(older to younger),minor compaction总是从older store file开始选择
写优化
多个HTable 并发写
因为创建一个HTable需要很多的时间进行连接
static final Configuration conf = HBaseConfiguration.create();
static final String table_log_name = “user_log”;
wTableLog = new HTable[tableN];
for (int i = 0; i < tableN; i++) {
wTableLog[i] = new HTable(conf, table_log_name);
wTableLog[i].setWriteBufferSize(5 * 1024 * 1024); //5MB
wTableLog[i].setAutoFlush(false);
}
HTable参数设置
2.2.1 Auto Flush
通过调用HTable.setAutoFlush(false)方法可以将HTable写客户端的自动flush关闭,这样可以批量写入数据到HBase,而不是有一条put就执行一次更新,只有当put填满客户端写缓存时,才实际向HBase服务端发起写请求。默认情况下auto flush是开启的。
2.2.2 Write Buffer
通过调用HTable.setWriteBufferSize(writeBufferSize)方法可以设置HTable客户端的写buffer大小,如果新设置的buffer小于当前写buffer中的数据时,buffer将会被flush到服务端。其中,writeBufferSize的单位是byte字节数,可以根据实际写入数据量的多少来设置该值。
2.2.3 WAL Flag
在HBae中,客户端向集群中的RegionServer提交数据时(Put/Delete操作),首先会先写WAL(Write Ahead Log)日志(即HLog,一个RegionServer上的所有Region共享一个HLog),只有当WAL日志写成功后,再接着写MemStore,然后客户端被通知提交数据成功;如果写WAL日志失败,客户端则被通知提交失败。这样做的好处是可以做到RegionServer宕机后的数据恢复。
因此,对于相对不太重要的数据,可以在Put/Delete操作时,通过调用Put.setWriteToWAL(false)或Delete.setWriteToWAL(false)函数,放弃写WAL日志,从而提高数据写入的性能。
值得注意的是:谨慎选择关闭WAL日志,因为这样的话,一旦RegionServer宕机,Put/Delete的数据将会无法根据WAL日志进行恢复。
批量写
通过调用HTable.put(Put)方法可以将一个指定的row key记录写入HBase,同样HBase提供了另一个方法:通过调用HTable.put(List
多线程并发写
在客户端开启多个HTable写线程,每个写线程负责一个HTable对象的flush操作,这样结合定时flush和写buffer(writeBufferSize),可以既保证在数据量小的时候,数据可以在较短时间内被flush(如1秒内),同时又保证在数据量大的时候,写buffer一满就及时进行flush。下面给个具体的例子:
for (int i = 0; i < threadN; i++) {
Thread th = new Thread() {
public void run() {
while (true) {
try {
sleep(1000); //1 second
} catch (InterruptedException e) {
e.printStackTrace();
}
synchronized (wTableLog[i]) {
try {
wTableLog[i].flushCommits();
} catch (IOException e) {
e.printStackTrace();
}
}
}
}
};
th.setDaemon(true);
th.start();
}
读优化
HTable并发读
创建多个HTable客户端用于读操作,提高读数据的吞吐量,一个例子:
static final Configuration conf = HBaseConfiguration.create();
static final String table_log_name = “user_log”;
rTableLog = new HTable[tableN];
for (int i = 0; i < tableN; i++) {
rTableLog[i] = new HTable(conf, table_log_name);
rTableLog[i].setScannerCaching(50);
}
HTable参数设置
Scanner Caching
hbase.client.scanner.caching配置项可以设置HBase scanner一次从服务端抓取的数据条数,默认情况下一次一条。通过将其设置成一个合理的值,可以减少scan过程中next()的时间开销,代价是scanner需要通过客户端的内存来维持这些被cache的行记录。
有三个地方可以进行配置:1)在HBase的conf配置文件中进行配置;2)通过调用HTable.setScannerCaching(int scannerCaching)进行配置;3)通过调用Scan.setCaching(int caching)进行配置。三者的优先级越来越高。
Scan Attribute Selection
scan时指定需要的Column Family,可以减少网络传输数据量,否则默认scan操作会返回整行所有Column Family的数据。
Close ResultScanner
通过scan取完数据后,记得要关闭ResultScanner,否则RegionServer可能会出现问题(对应的Server资源无法释放)。
批量读
通过调用HTable.get(Get)方法可以根据一个指定的row key获取一行记录,同样HBase提供了另一个方法:通过调用HTable.get(List
多线程并发读
在客户端开启多个HTable读线程,每个读线程负责通过HTable对象进行get操作。下面是一个多线程并发读取HBase,获取店铺一天内各分钟PV值的例子:
public class DataReaderServer {
//获取店铺一天内各分钟PV值的入口函数
public static ConcurrentHashMap<String, String> getUnitMinutePV(long uid, long startStamp, long endStamp){
long min = startStamp;
int count = (int)((endStamp - startStamp) / (60*1000));
List<String> lst = new ArrayList<String>();
for (int i = 0; i <= count; i++) {
min = startStamp + i * 60 * 1000;
lst.add(uid + "_" + min);
}
return parallelBatchMinutePV(lst);
}
//多线程并发查询,获取分钟PV值
private static ConcurrentHashMap<String, String> parallelBatchMinutePV(List<String> lstKeys){
ConcurrentHashMap<String, String> hashRet = new ConcurrentHashMap<String, String>();
int parallel = 3;
List<List<String>> lstBatchKeys = null;
if (lstKeys.size() < parallel ){
lstBatchKeys = new ArrayList<List<String>>(1);
lstBatchKeys.add(lstKeys);
}
else{
lstBatchKeys = new ArrayList<List<String>>(parallel);
for(int i = 0; i < parallel; i++ ){
List<String> lst = new ArrayList<String>();
lstBatchKeys.add(lst);
}
for(int i = 0 ; i < lstKeys.size() ; i ++ ){
lstBatchKeys.get(i%parallel).add(lstKeys.get(i));
}
}
List<Future< ConcurrentHashMap<String, String> >> futures = new ArrayList<Future< ConcurrentHashMap<String, String> >>(5);
ThreadFactoryBuilder builder = new ThreadFactoryBuilder();
builder.setNameFormat("ParallelBatchQuery");
ThreadFactory factory = builder.build();
ThreadPoolExecutor executor = (ThreadPoolExecutor) Executors.newFixedThreadPool(lstBatchKeys.size(), factory);
for(List<String> keys : lstBatchKeys){
Callable< ConcurrentHashMap<String, String> > callable = new BatchMinutePVCallable(keys);
FutureTask< ConcurrentHashMap<String, String> > future = (FutureTask< ConcurrentHashMap<String, String> >) executor.submit(callable);
futures.add(future);
}
executor.shutdown();
// Wait for all the tasks to finish
try {
boolean stillRunning = !executor.awaitTermination(
5000000, TimeUnit.MILLISECONDS);
if (stillRunning) {
try {
executor.shutdownNow();
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
} catch (InterruptedException e) {
try {
Thread.currentThread().interrupt();
} catch (Exception e1) {
// TODO Auto-generated catch block
e1.printStackTrace();
}
}
// Look for any exception
for (Future f : futures) {
try {
if(f.get() != null)
{
hashRet.putAll((ConcurrentHashMap<String, String>)f.get());
}
} catch (InterruptedException e) {
try {
Thread.currentThread().interrupt();
} catch (Exception e1) {
// TODO Auto-generated catch block
e1.printStackTrace();
}
} catch (ExecutionException e) {
e.printStackTrace();
}
}
return hashRet;
}
//一个线程批量查询,获取分钟PV值
protected static ConcurrentHashMap<String, String> getBatchMinutePV(List<String> lstKeys){
ConcurrentHashMap<String, String> hashRet = null;
List<Get> lstGet = new ArrayList<Get>();
String[] splitValue = null;
for (String s : lstKeys) {
splitValue = s.split("_");
long uid = Long.parseLong(splitValue[0]);
long min = Long.parseLong(splitValue[1]);
byte[] key = new byte[16];
Bytes.putLong(key, 0, uid);
Bytes.putLong(key, 8, min);
Get g = new Get(key);
g.addFamily(fp);
lstGet.add(g);
}
Result[] res = null;
try {
res = tableMinutePV[rand.nextInt(tableN)].get(lstGet);
} catch (IOException e1) {
logger.error("tableMinutePV exception, e=" + e1.getStackTrace());
}
if (res != null && res.length > 0) {
hashRet = new ConcurrentHashMap<String, String>(res.length);
for (Result re : res) {
if (re != null && !re.isEmpty()) {
try {
byte[] key = re.getRow();
byte[] value = re.getValue(fp, cp);
if (key != null && value != null) {
hashRet.put(String.valueOf(Bytes.toLong(key,
Bytes.SIZEOF_LONG)), String.valueOf(Bytes
.toLong(value)));
}
} catch (Exception e2) {
logger.error(e2.getStackTrace());
}
}
}
}
return hashRet;
}
}
//调用接口类,实现Callable接口
class BatchMinutePVCallable implements Callable<ConcurrentHashMap<String, String>>{
private List<String> keys;
public BatchMinutePVCallable(List<String> lstKeys ) {
this.keys = lstKeys;
}
public ConcurrentHashMap<String, String> call() throws Exception {
return DataReadServer.getBatchMinutePV(keys);
}
}
缓存查询结果
对于频繁查询HBase的应用场景,可以考虑在应用程序中做缓存,当有新的查询请求时,首先在缓存中查找,如果存在则直接返回,不再查询HBase;否则对HBase发起读请求查询,然后在应用程序中将查询结果缓存起来。至于缓存的替换策略,可以考虑LRU等常用的策略。
Blockcache
HBase上Regionserver的内存分为两个部分,一部分作为Memstore,主要用来写;另外一部分作为BlockCache,主要用于读。
写请求会先写入Memstore,Regionserver会给每个region提供一个Memstore,当Memstore满64MB以后,会启动 flush刷新到磁盘。当Memstore的总大小超过限制时(heapsize * hbase.regionserver.global.memstore.upperLimit * 0.9),会强行启动flush进程,从最大的Memstore开始flush直到低于限制。
读请求先到Memstore中查数据,查不到就到BlockCache中查,再查不到就会到磁盘上读,并把读的结果放入BlockCache。由于BlockCache采用的是LRU策略,因此BlockCache达到上限(heapsize * hfile.block.cache.size * 0.85)后,会启动淘汰机制,淘汰掉最老的一批数据。
一个Regionserver上有一个BlockCache和N个Memstore,它们的大小之和不能大于等于heapsize * 0.8,否则HBase不能启动。默认BlockCache为0.2,而Memstore为0.4。对于注重读响应时间的系统,可以将 BlockCache设大些,比如设置BlockCache=0.4,Memstore=0.39,以加大缓存的命中率。
有关BlockCache机制,请参考这里:HBase的Block cache,HBase的blockcache机制,hbase中的缓存的计算与使用。
HTable和HTablePool使用注意事项
HTable和HTablePool都是HBase客户端API的一部分,可以使用它们对HBase表进行CRUD操作。下面结合在项目中的应用情况,对二者使用过程中的注意事项做一下概括总结。
Configuration conf = HBaseConfiguration.create();
try (Connection connection = ConnectionFactory.createConnection(conf)) {
try (Table table = connection.getTable(TableName.valueOf(tablename)) {
// use table as needed, the table returned is lightweight
}
}
HTable
HTable是HBase客户端与HBase服务端通讯的Java API对象,客户端可以通过HTable对象与服务端进行CRUD操作(增删改查)。它的创建很简单:
Configuration conf = HBaseConfiguration.create();
HTable table = new HTable(conf, "tablename");
//TODO CRUD Operation……
HTable使用时的一些注意事项:
- 规避HTable对象的创建开销
因为客户端创建HTable对象后,需要进行一系列的操作:检查.META.表确认指定名称的HBase表是否存在,表是否有效等等,整个时间开销比较重,可能会耗时几秒钟之长,因此最好在程序启动时一次性创建完成需要的HTable对象,如果使用Java API,一般来说是在构造函数中进行创建,程序启动后直接重用。 - HTable对象不是线程安全的
HTable对象对于客户端读写数据来说不是线程安全的,因此多线程时,要为每个线程单独创建复用一个HTable对象,不同对象间不要共享HTable对象使用,特别是在客户端auto flash被置为false时,由于存在本地write buffer,可能导致数据不一致。 - HTable对象之间共享Configuration
HTable对象共享Configuration对象,这样的好处在于:
• 共享ZooKeeper的连接:每个客户端需要与ZooKeeper建立连接,查询用户的table regions位置,这些信息可以在连接建立后缓存起来共享使用;
• 共享公共的资源:客户端需要通过ZooKeeper查找-ROOT-和.META.表,这个需要网络传输开销,客户端缓存这些公共资源后能够减少后续的网络传输开销,加快查找过程速度。
因此,与以下这种方式相比:
HTable table1 = new HTable("table1");
HTable table2 = new HTable("table2");
下面的方式更有效些:
Configuration conf = HBaseConfiguration.create();
HTable table1 = new HTable(conf, "table1");
HTable table2 = new HTable(conf, "table2");
备注:即使是高负载的多线程程序,也并没有发现因为共享Configuration而导致的性能问题;如果你的实际情况中不是如此,那么可以尝试不共享Configuration。
HTablePool
HTablePool可以解决HTable存在的线程不安全问题,同时通过维护固定数量的HTable对象,能够在程序运行期间复用这些HTable资源对象。
Configuration conf = HBaseConfiguration.create();
HTablePool pool = new HTablePool(conf, 10);
- HTablePool可以自动创建HTable对象,而且对客户端来说使用上是完全透明的,可以避免多线程间数据并发修改问题。
- HTablePool中的HTable对象之间是公用Configuration连接的,能够可以减少网络开销。
HTablePool的使用很简单:每次进行操作前,通过HTablePool的getTable方法取得一个HTable对象,然后进行put/get/scan/delete等操作,最后通过HTablePool的putTable方法将HTable对象放回到HTablePool中。
下面是个使用HTablePool的简单例子:
public void createUser(String username, String firstName, String lastName, String email, String password, String roles) throws IOException {
HTable table = rm.getTable(UserTable.NAME);
Put put = new Put(Bytes.toBytes(username));
put.add(UserTable.DATA_FAMILY, UserTable.FIRSTNAME,
Bytes.toBytes(firstName));
put.add(UserTable.DATA_FAMILY, UserTable.LASTNAME,
Bytes.toBytes(lastName));
put.add(UserTable.DATA_FAMILY, UserTable.EMAIL, Bytes.toBytes(email));
put.add(UserTable.DATA_FAMILY, UserTable.CREDENTIALS,
Bytes.toBytes(password));
put.add(UserTable.DATA_FAMILY, UserTable.ROLES, Bytes.toBytes(roles));
table.put(put);
table.flushCommits();
rm.putTable(table);
}
Hbase和DBMS比较:
查询数据不灵活:
1、 不能使用column之间过滤查询
2、 不支持全文索引。使用ES和hbase整合完成全文搜索。
a) 使用MR批量读取hbase中的数据,在ES里面建立索引(no store)之保存rowkey的值。
b) 根据关键词从索引中搜索到rowkey(分页)
c) 根据rowkey从hbase查询所有数据