MapReduce好友推荐案例
MapReduce好友推荐案例
好友序列
tom hello hadoop cat
world hadoop hello hive
cat tom hive
mr hive hello
hive cat hadoop world hello mr
hadoop tom hive world
hello tom world hive mr
第一个表示用户,第二个开始就是联系人
tom的联系人有hello、hadoop、cat三个兰溪人,我们需要为用户提供联系人。
分析可知:
我们需要在map阶段根据用户的直接联系和间接关系列举出来,map输出的为tom:hadoop 1,hello:hadoop 0,0代表间接关系,1代表直接关系。在Reduce阶段把直接关系的人删除掉,再输出。
RecomFriendApp
package icu.shaoyayu.hadoop.mr.buddy;
import icu.shaoyayu.hadoop.mr.buddy.mapper.RecomFriendMapper;
import icu.shaoyayu.hadoop.mr.buddy.reduce.RecomFriendReduce;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
/**
* @author 邵涯语
* @date 2020/4/18 23:33
* @Version :
*/
public class RecomFriendApp {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
//获取配置
Configuration configuration = new Configuration(true);
//获取作业
Job job = Job.getInstance(configuration);
job.setJarByClass(RecomFriendApp.class);
//配置
//map环节
job.setMapperClass(RecomFriendMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
//Reduce环节
job.setReducerClass(RecomFriendReduce.class);
//设置作业输入输出的路径
Path inputPath = new Path("/data/friend/input/");
FileInputFormat.setInputPaths(job,inputPath);
Path outputPath = new Path("/data/friend/output/");
if (outputPath.getFileSystem(configuration).exists(outputPath)){
outputPath.getFileSystem(configuration).delete(outputPath,true);
}
FileOutputFormat.setOutputPath(job,outputPath);
//提交作业
job.waitForCompletion(true);
}
}
RecomFriendMapper
package icu.shaoyayu.hadoop.mr.buddy.mapper;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.util.StringUtils;
import java.io.IOException;
/**
* @author 邵涯语
* @date 2020/4/18 23:43
* @Version :
*/
public class RecomFriendMapper extends Mapper<LongWritable, Text,Text, IntWritable> {
private Text mKey = new Text();
private IntWritable mValue = new IntWritable();
/**
* 重写map方法
* @param key
* @param value
* @param context
* @throws IOException
* @throws InterruptedException
*/
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//tom hello hadoop cat
String[] sts = StringUtils.split(value.toString(),' ');
for (int i = 1; i < sts.length; i++) {
mKey.set(compareTwoStrings(sts[0],sts[i]));
mValue.set(0);
context.write(mKey,mValue);
for (int j = i+1; j < sts.length; j++) {
mKey.set(compareTwoStrings(sts[i],sts[j]));
mValue.set(1);
context.write(mKey,mValue);
}
}
}
private static String compareTwoStrings(String val1,String val2){
if (val1.compareTo(val2) < 0){
return val1+":"+val2;
}
return val2+":"+val1;
}
}
RecomFriendReduce
package icu.shaoyayu.hadoop.mr.buddy.reduce;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
/**
* @author 邵涯语
* @date 2020/4/18 23:46
* @Version :
*/
public class RecomFriendReduce extends Reducer<Text, IntWritable,Text,IntWritable> {
private IntWritable mVale = new IntWritable();
/**
* reduce阶段
* @param key
* @param values
* @param context
* @throws IOException
* @throws InterruptedException
*/
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
//tom:hello 0
//tom:hello 1
//tom:hello 0
int flg = 0;
int sum = 0;
for (IntWritable value : values) {
if (value.get() == 0){
flg = 1;
}
sum+= value.get();
}
if (flg==0){
mVale.set(sum);
context.write(key,mVale);
}
}
}
记得加油学习哦^_^