配置YARN高可用
配置YARN高可用
官方文档:https://hadoop.apache.org/docs/r2.7.5/
1、Configure parameters as follows:etc/hadoop/mapred-site.xml:
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>
etc/hadoop/yarn-site.xml:
<configuration>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.resourcemanager.ha.enabled</name>
<value>true</value>
</property>
<property>
<name>yarn.resourcemanager.cluster-id</name>
<value>cluster1</value>
</property>
<property>
<name>yarn.resourcemanager.ha.rm-ids</name>
<value>rm1,rm2</value>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm1</name>
<value>hadoopNode03</value>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm2</name>
<value>hadoopNode04</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address.rm1</name>
<value>hadoopNode03:8088</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address.rm2</name>
<value>hadoopNode04:8088</value>
</property>
<property>
<name>yarn.resourcemanager.zk-address</name>
<value>hadoopNode02:2181,hadoopNode03:2181,hadoopNode04:2181</value>
</property>
</configuration>
按照我们的需求分发配置文件到其他节点
在节点1上启动我们看看:
[root@hadoopNode01 hadoop]# start-yarn.sh
starting yarn daemons
starting resourcemanager, logging to /opt/mgs/hadoop-2.7.5/logs/yarn-root-resourcemanager-hadoopNode01.out
hadoopNode04: starting nodemanager, logging to /opt/mgs/hadoop-2.7.5/logs/yarn-root-nodemanager-hadoopNode04.out
hadoopNode03: starting nodemanager, logging to /opt/mgs/hadoop-2.7.5/logs/yarn-root-nodemanager-hadoopNode03.out
hadoopNode02: starting nodemanager, logging to /opt/mgs/hadoop-2.7.5/logs/yarn-root-nodemanager-hadoopNode02.out
可以看到 nodemanager会根据我们配置的slaves里面找到相对于的Datanode
接下来我们还要在节点三和节点四上面手动的启动yarn
[root@hadoopNode03 hadoop]# yarn-daemon.sh start resourcemanager
starting resourcemanager, logging to /opt/mgs/hadoop-2.7.5/logs/yarn-root-resourcemanager-hadoopNode03.out
[root@hadoopNode03 hadoop]# jps
2757 Jps
2712 ResourceManager
1626 JournalNode
1515 QuorumPeerMain
2558 NodeManager
1567 DataNode
[root@hadoopNode03 hadoop]#
统计单词案例
[root@hadoopNode01 mapreduce]# hadoop jar hadoop-mapreduce-examples-2.7.5.jar wordcount /mgs/apiCreate/jk5172user.txt /mgs/output/jike
20/04/10 20:25:28 INFO client.ConfiguredRMFailoverProxyProvider: Failing over to rm2
20/04/10 20:25:30 INFO input.FileInputFormat: Total input paths to process : 1
20/04/10 20:25:31 INFO mapreduce.JobSubmitter: number of splits:1
20/04/10 20:25:31 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1586521055500_0001
20/04/10 20:25:32 INFO impl.YarnClientImpl: Submitted application application_1586521055500_0001
20/04/10 20:25:32 INFO mapreduce.Job: The url to track the job: http://hadoopNode04:8088/proxy/application_1586521055500_0001/
20/04/10 20:25:32 INFO mapreduce.Job: Running job: job_1586521055500_0001
20/04/10 20:25:50 INFO mapreduce.Job: Job job_1586521055500_0001 running in uber mode : false
20/04/10 20:25:50 INFO mapreduce.Job: map 0% reduce 0%
20/04/10 20:26:03 INFO mapreduce.Job: map 100% reduce 0%
20/04/10 20:26:17 INFO mapreduce.Job: map 100% reduce 100%
20/04/10 20:26:17 INFO mapreduce.Job: Job job_1586521055500_0001 completed successfully
20/04/10 20:26:17 INFO mapreduce.Job: Counters: 49
File System Counters
FILE: Number of bytes read=2671
FILE: Number of bytes written=254429
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=8268243
HDFS: Number of bytes written=2521
HDFS: Number of read operations=6
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=1
Launched reduce tasks=1
Data-local map tasks=1
Total time spent by all maps in occupied slots (ms)=11303
Total time spent by all reduces in occupied slots (ms)=10603
Total time spent by all map tasks (ms)=11303
Total time spent by all reduce tasks (ms)=10603
Total vcore-milliseconds taken by all map tasks=11303
Total vcore-milliseconds taken by all reduce tasks=10603
Total megabyte-milliseconds taken by all map tasks=11574272
Total megabyte-milliseconds taken by all reduce tasks=10857472
Map-Reduce Framework
Map input records=99737
Map output records=997366
Map output bytes=16742458
Map output materialized bytes=2671
Input split bytes=110
Combine input records=997366
Combine output records=153
Reduce input groups=153
Reduce shuffle bytes=2671
Reduce input records=153
Reduce output records=153
Spilled Records=306
Shuffled Maps =1
Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=948
CPU time spent (ms)=6460
Physical memory (bytes) snapshot=316002304
Virtual memory (bytes) snapshot=4160417792
Total committed heap usage (bytes)=165810176
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=8268133
File Output Format Counters
Bytes Written=2521
到此结束
记得加油学习哦^_^