MongoDB Map Reduce

  Map-Reduce是一种计算模型,简单的说就是将大批量的工作(数据)分解(MAP)执行,然后再将结果合并成最终结果(REDUCE)。

MongoDB提供的Map-Reduce非常灵活,对于大规模数据分析也相当实用。

 

以下是MapReduce的基本语法:

db.runCommand(
  { mapreduce : <collection>,
    map : <mapfunction>,
    reduce : <reducefunction>,
    out : <see output options below>
    [, query : <query filter object>]
    [, sort : <sorts the input objects using this key. Useful for optimization, like sorting by the emit key for fewer reduces>]
    [, limit : <number of objects to return from collection, not supported with sharding>]
    [, keeptemp: <true|false>]
    [, finalize : <finalizefunction>]
    [, scope : <object where fields go into javascript global scope >]
    [, jsMode : true]
    [, verbose : true]
    }
  );
 

 

  使用 MapReduce 要实现两个函数 Map 函数和 Reduce 函数,Map 函数调用 emit(key, value), 遍历 collection 中所有的记录, 将key 与 value 传递给 Reduce 函数进行处理。

Map 函数必须调用 emit(key, value) 返回键值对。

参数说明:

  • map :映射函数 (生成键值对序列,作为 reduce 函数参数)。
  • reduce 统计函数,reduce函数的任务就是将key-values变成key-value,也就是把values数组变成一个单一的值value。。
  • out 统计结果存放集合 (不指定则使用临时集合,在客户端断开后自动删除)。
  • query 一个筛选条件,只有满足条件的文档才会调用map函数。(query。limit,sort可以随意组合)
  • sort 和limit结合的sort排序参数(也是在发往map函数前给文档排序),可以优化分组机制
  • limit 发往map函数的文档数量的上限(要是没有limit,单独使用sort的用处不大)
  • keeptemp:是否保留临时集合

  • finalize:最终处理函数(对reduce返回结果执行最终整理后存入结果集合,再进行一些数据“修剪”性质的处理)
  • scope:向map、reduce、finalize导入外部变量

  • verbose:显示详细的时间统计信息
插入测试数据:

  for i in xrange(1000):
    rID=math.floor(random.random()*10);
    price = round(random.random()*10,2);
    if rID < 4:
      db.test.insert({"_id":i,"user":"Joe","product":rID,"price":price});
    elif rID>=4 and rID<7:
      db.test.insert({"_id":i,"user":"Josh","product":rID,"price":price});
    else:
      db.test.insert({"_id":i,"user":"Ken","product":rID,"price":price});

  结果数据为: 

  { "_id" : 0, "price" : 5.9, "product" : 9, "user" : "Ken" }
  { "_id" : 1, "price" : 7.59, "product" : 7, "user" : "Ken" }
  { "_id" : 2, "price" : 4.72, "product" : 0, "user" : "Joe" }
  { "_id" : 3, "price" : 1.35, "product" : 1, "user" : "Joe" }
  { "_id" : 4, "price" : 2.31, "product" : 0, "user" : "Joe" }
  { "_id" : 5, "price" : 5.29, "product" : 5, "user" : "Josh" }
  { "_id" : 6, "price" : 3.34, "product" : 1, "user" : "Joe" }
  { "_id" : 7, "price" : 7.2, "product" : 4, "user" : "Josh" }
  { "_id" : 8, "price" : 8.1, "product" : 6, "user" : "Josh" }
  { "_id" : 9, "price" : 2.57, "product" : 3, "user" : "Joe" }
  { "_id" : 10, "price" : 0.54, "product" : 2, "user" : "Joe" }
  { "_id" : 11, "price" : 0.66, "product" : 1, "user" : "Joe" }
  { "_id" : 12, "price" : 5.51, "product" : 1, "user" : "Joe" }
  { "_id" : 13, "price" : 3.74, "product" : 6, "user" : "Josh" }
  { "_id" : 14, "price" : 4.82, "product" : 0, "user" : "Joe" }
  { "_id" : 15, "price" : 9.79, "product" : 3, "user" : "Joe" }
  { "_id" : 16, "price" : 9.6, "product" : 5, "user" : "Josh" }
  { "_id" : 17, "price" : 4.06, "product" : 7, "user" : "Ken" }
  { "_id" : 18, "price" : 1.37, "product" : 5, "user" : "Josh" }
  { "_id" : 19, "price" : 6.77, "product" : 9, "user" : "Ken" }

 

测试1、每个用户各购买了多少个产品?
用SQL语句实现为:select user,count(product) from test group by user

//MapReduce实现

  map=function (){
    emit(this.user,{count:1})
  }

 

  reduce = function (key, values){
    var total = 0;
    for (var i = 0; i < values.length; i++)
    {
      total += values[i].count;
    }
    return {count:total};
    }

  result = db.test.mapReduce(map,reduce,{out: 're'})
执行结果:
  

  

  结果表明,共有1000个符合查询条件的文档, 在map函数中生成了1000个键值对文档,最后使用reduce函数将相同的键值分为两组。

  具体参数说明:

  • result:储存结果的collection的名字,这是个临时集合,MapReduce的连接关闭后自动就被删除了。
  • timeMillis:执行花费的时间,毫秒为单位
  • input:满足条件被发送到map函数的文档个数
  • emit:在map函数中emit被调用的次数,也就是所有集合中的数据总量
  • ouput:结果集合中的文档个数(count对调试非常有帮助)
  • ok:是否成功,成功为1
  • err:如果失败,这里可以有失败原因,不过从经验上来看,原因比较模糊,作用不大

  使用 find 操作符来查看 mapReduce 的查询结果:

  查询结果:
  

  

  2、每个用户不同的产品购买了多少个?(复合Key做re)

  SQL实现:select user,product,count(*) from test group by user,product

  MapReduce 实现:

  

  map = function (){
    emit({user:this.user,product:this.product},{count:1})
  }

  reduce = function (key, values){
    var total = 0;
    for (var i = 0; i < values.length; i++) 
    {
      total += values[i].count;
    }
    return {count:total};
    }

  执行:result = db.test.mapReduce(map,reduce,{out: 're2'})

       

  查询结果re2:

  

 3. 每个用户购买的产品数量,总金额是多少?(复合Reduce结果处理)

  SQL实现为:select user,count(product),sum(price) from test group by user

  MapReduce实现:

  

  map=function (){
    emit(this.user,{amount:this.price,count:1})
  }

  

  reduce = function (key, values){
     var res={amount:0,count:0};
     for (var i = 0; i < values.length; i++)
     {
      res.count += values[i].count;
      res.amount += values[i].amount;
     }
     res.count = Math.round(res.count,2);
     res.amount = Math.round(res.amount,2);
     return res;
  }

  执行:db.test.mapReduce(map,reduce,{out:"re3"})

  

  查询re3:

  

4、在3中返回的amount的float精度需要改成两位小数,还需要得到商品的平均价格。(使用Finalize处理reduce结果集)

  SQL实现:select user,count(sku),sum(price),round(sum(price)/count(sku),2) as avgPrice from test group by user

  MapReduce实现:

 

  执行:db.test.mapReduce(map,reduce,{out:'re4'})

  

  查询结果 re4:

      

  map=function (){
    emit(this.user,{amount:this.price,count:1,avgPrice:0})
  }

  reduce = function (key, values){
     var res={amount:0,count:0};
     for (var i = 0; i < values.length; i++)
     {
      res.count += values[i].count;
      res.amount += values[i].amount;
     }
     return res;
  }

 


  finalizeFun = function (key,reduceResult){
    reduceResult.amount=(reduceResult.amount).toFixed(2);
    reduceResult.avgPrice=(reduceResult.amount/reduceResult.count).toFixed(2);
    return reduceResult;
  }

 执行: db.test.mapReduce(map,reduce,{out:"mr4",finalize:finalizeFun})

      

  查询结果:

  

    5. 统计单价大于6的SKU,每个用户的购买数量.(筛选数据子集做MR)

  SQL实现:select user,count(product) from test where price >6 group by user

  MapReduce实现:

 map=function (){
    emit(this.user,{count:1}) 
  }

 

  reduce = function (key, values){
    var total = 0;
    for (var i = 0; i < values.length; i++) 
    {
      total += values[i].count;
    }
    return {count:total};
    }

  db.test.mapReduce(map,reduce,{query:{price:{"$gt":6}},out:"re5"})

  

  查询结果:

      

 

posted on 2016-07-19 15:09  shaomine  阅读(807)  评论(0编辑  收藏  举报