linux install Openvino
recommend centos7
1. download
openvino addational installation for ncs2
browser download https://pan.baidu.com/s/1jN3gP2TDndeguqqGFS78GQ to ~/obama.mp4
2. install ui
Report error:
1 2 | Transaction check error: file /boot/efi/EFI/centos from install of fwupdate-efi-12-5.el7.centos.x86_64 conflicts with file from package grub2-common-1:2.02-0.65.el7.centos.2.noarch |
resolve by fwupdate-efi conflicts with grub2-common
2. Movidius
ncsdk 和 openvino 没有关系。
doc1:
1 2 | cd /opt/intel/computer_vision_sdk/deployment_tools/documentation python3 -m http.server |
doc2:
1 2 | /opt/intel/computer_vision_sdk/deployment_tools/intel_models python3 -m http.server 8001 |
3. build exmaple
1 2 3 4 5 6 7 | cd /opt/intel/computer_vision_sdk/deployment_tools/inference_engine/samples . /build_samples .sh echo "PATH=\$PATH:$HOME/inference_engine_samples_build/intel64/Release" >> ~/.bashrc source ~/.bashrc # Build completed, you can find binaries for all samples in the /home/user/inference_engine_samples_build/intel64/Release subfolder. |
1 | ls /opt/intel/computer_vision_sdk/deployment_tools/intel_models |
4. Pre-Trained Models (Open Model Zoo)
1 2 | echo "MZOOPATH=/opt/intel/computer_vision_sdk/deployment_tools/intel_models" >> ~/.bashrc source ~/.bashrc |
5. download new Model
1 2 3 4 5 6 7 8 9 | cd /opt/intel/computer_vision_sdk/deployment_tools/model_downloader echo "PATH=\$PATH:/opt/intel/computer_vision_sdk/deployment_tools/model_downloader" >> ~/.bashrc echo "PATH=\$PATH:/opt/intel/computer_vision_sdk/deployment_tools/model_optimizer" >> ~/.bashrc source ~/.bashrc # python3 downloader.py --name alexnet downloader.py --name alexnet cd $HOME /classification/alexnet/caffe/ # python3 mo.py --input_model alexnet.caffemodel mo.py --input_model alexnet.caffemodel |
6. classification
1 2 3 | wget https: //www .petmd.com /sites/default/files/what-does-it-mean-when-cat-wags-tail .jpg -O cat .jpg classification_sample -i cat .jpg -m alexnet.xml -nt 5 |
7. Security Barrier Camera Demo
1 2 3 4 5 6 7 8 9 10 11 | cd $MZOOPATH security_barrier_camera_demo -i vehicle-attributes-recognition-barrier-0039 /description/vehicle-attributes-recognition-barrier-0039-1 .png vehicle-attributes-recognition-barrier-0039 /description/vehicle-attributes-recognition-barrier-0039-2 .png -m vehicle-license-plate-detection-barrier-0106 /FP32/vehicle-license-plate-detection-barrier-0106 .xml -m_va vehicle-attributes-recognition-barrier-0039 /FP32/vehicle-attributes-recognition-barrier-0039 .xml -m_lpr license-plate-recognition-barrier-0001 /FP32/license-plate-recognition-barrier-0001 .xml security_barrier_camera_demo -i vehicle-attributes-recognition-barrier-0039 /description/vehicle-attributes-recognition-barrier-0039-2 .png -m vehicle-license-plate-detection-barrier-0106 /FP32/vehicle-license-plate-detection-barrier-0106 .xml -m_va vehicle-attributes-recognition-barrier-0039 /FP32/vehicle-attributes-recognition-barrier-0039 .xml -m_lpr license-plate-recognition-barrier-0001 /FP32/license-plate-recognition-barrier-0001 .xml security_barrier_camera_demo -i vehicle-attributes-recognition-barrier-0039 /description/vehicle-attributes-recognition-barrier-0039-1 .png vehicle-attributes-recognition-barrier-0039 /description/vehicle-attributes-recognition-barrier-0039-2 .png -m vehicle-license-plate-detection-barrier-0106 /FP32/vehicle-license-plate-detection-barrier-0106 .xml -m_va vehicle-attributes-recognition-barrier-0039 /FP32/vehicle-attributes-recognition-barrier-0039 .xml -m_lpr license-plate-recognition-barrier-0001 /FP32/license-plate-recognition-barrier-0001 .xml security_barrier_camera_demo -i vehicle-license-plate-detection-barrier-0106 /description/vehicle-license-plate-detection-barrier-0106 .jpeg vehicle-attributes-recognition-barrier-0039 /description/vehicle-attributes-recognition-barrier-0039-2 .png -m vehicle-license-plate-detection-barrier-0106 /FP32/vehicle-license-plate-detection-barrier-0106 .xml -m_va vehicle-attributes-recognition-barrier-0039 /FP32/vehicle-attributes-recognition-barrier-0039 .xml -m_lpr license-plate-recognition-barrier-0001 /FP32/license-plate-recognition-barrier-0001 .xml security_barrier_camera_demo -i license-plate-recognition-barrier-0001 /description/license-plate-recognition-barrier-0001 .png vehicle-attributes-recognition-barrier-0039 /description/vehicle-attributes-recognition-barrier-0039-2 .png -m vehicle-license-plate-detection-barrier-0106 /FP32/vehicle-license-plate-detection-barrier-0106 .xml -m_va vehicle-attributes-recognition-barrier-0039 /FP32/vehicle-attributes-recognition-barrier-0039 .xml -m_lpr license-plate-recognition-barrier-0001 /FP32/license-plate-recognition-barrier-0001 .xml |
8. Object Detection for Faster R-CNN Demo
1 2 3 4 5 6 7 8 9 10 11 12 13 | mkdir -p ~ /ObjDetection/faster_rcnn/caffe cd ~ /ObjDetection/faster_rcnn/caffe wget https: //raw .githubusercontent.com /rbgirshick/py-faster-rcnn/master/models/pascal_voc/VGG16/faster_rcnn_end2end/test .prototxt # curl -k -O -L https://dl.dropboxusercontent.com/s/o6ii098bu51d139/faster_rcnn_models.tgz?dl=0 mv faster_rcnn_models.tgz* faster_rcnn_models.tgz tar -zxvf faster_rcnn_models.tgz # cd faster_rcnn_models/ mo_caffe.py --input_model faster_rcnn_models /VGG16_faster_rcnn_final .caffemodel --input_proto test .prototxt object_detection_demo -i $MZOOPATH /person-detection-retail-0002/description/person-detection-retail-0002 .png -m VGG16_faster_rcnn_final.xml |
1 2 | cd $MZOOPATH object_detection_demo -i $MZOOPATH /person-detection-retail-0002/description/person-detection-retail-0002 .png -m person-detection-retail-0002 /FP32/person-detection-retail-0002 .xml --bbox_name detector /bbox/ave_pred -d CPU |
8. Object Detection SSD Demo, Async API Performance Showcase
object_detection_demo_ssd_async -i <path_to_video>/inputVideo.mp4 -m <path_to_model>/ssd.xml -d GPU
9. Object Detection with SSD-VGG Sample
1 | object_detection_sample_ssd -i $MZOOPATH /person-detection-retail-0013/description/person-detection-retail-0013 .png -m $MZOOPATH /person-detection-retail-0013/FP32/person-detection-retail-0013 .xml |
10. TensorFlow* Object Detection Mask R-CNNs Segmentation Demo
./mask_rcnn_demo -i <path_to_image>/inputImage.bmp -m <path_to_model>/faster_rcnn.xml
11. Automatic Speech Recognition Sample
1 2 3 4 5 6 7 8 9 10 11 12 13 | mkdir -p ~ /kaldi/gna/ cd ~ /kaldi/gna/ wget https: //download .01.org /openvinotoolkit/2018_R3/models_contrib/GNA/wsj_dnn5b_smbr/wsj_dnn5b .counts wget https: //download .01.org /openvinotoolkit/2018_R3/models_contrib/GNA/wsj_dnn5b_smbr/wsj_dnn5b .nnet wget https: //download .01.org /openvinotoolkit/2018_R3/models_contrib/GNA/wsj_dnn5b_smbr/dev93_scores_10 .ark wget https: //download .01.org /openvinotoolkit/2018_R3/models_contrib/GNA/wsj_dnn5b_smbr/dev93_10 .ark mo.py --framework kaldi --input_model wsj*.nnet --counts wsj*.counts --remove_output_softmax speech_sample -d GNA_AUTO -bs 2 -i dev93_10.ark -m wsj_dnn5b.xml -o scores.ark -r dev93_scores_10.ark |
12. Use of Sample in Kaldi* Speech Recognition Pipeline
普及 Kaldi
13. Neural Style Transfer Sample
1 2 3 4 | $ locate cat .jpg /home/user/ncappzoo/data/images/cat .jpg /home/user/ncsdk/examples/data/images/cat .jpg /opt/movidius/ssd-caffe/examples/images/cat .jpg |
./style_transfer_sample -i <path_to_image>/cat.bmp -m <path_to_model>/1_decoder_FP32.xml
14. Hello Infer Request Classification Sample
1 2 | cd $HOME /classification/alexnet/caffe/ hello_request_classification alexnet.xml /home/user/ncsdk/examples/data/images/cat .jpg CPU |
15. Interactive Face Detection Demo
16. Image Segmentation Demo
17. Crossroad Camera Demo
1 2 | cd $MZOOPATH crossroad_camera_demo -i vdieo.mp4 -m person-vehicle-bike-detection-crossroad-0078 /FP32/person-vehicle-bike-detection-crossroad-0078 .xml -m_pa person-attributes-recognition-crossroad-0200 /FP32/person-attributes-recognition-crossroad-0200 .xml -m_reid person-reidentification-retail-0079 /FP32/person-reidentification-retail-0079 .xml |
18. Multi-Channel Face Detection Demo
1 2 3 4 | multi-channel-demo -m $MZOOPATH /face-detection-retail-0004/FP32/face-detection-retail-0004 .xml \ -l $HOME /inference_engine_samples_build/intel64/Release/lib/libcpu_extension .so \ - nc 1 -duplicate_num 3 |
19. Hello Autoresize Classification Sample
1 2 | cd $HOME /classification/alexnet/caffe/ hello_autoresize_classification alexnet.xml /home/user/ncsdk/examples/data/images/cat .jpg CPU |
20. Hello Shape Infer Sample
./hello_shape_infer_ssd <path_to_model>/ssd_300.xml <path_to_image>/500x500.bmp CPU 3
21. Human Pose Estimation Demo
1 | human_pose_estimation_demo -i ~ /obama .mp4 -m $MZOOPATH /human-pose-estimation-0001/FP32/human-pose-estimation-0001 .xml -d CPU |
22. Object Detection YOLO* V3 Demo, Async API Performance Showcase
object_detection_demo_yolov3_async -i <path_to_video>/inputVideo.mp4 -m <path_to_model>/yolo_v3.xml -d GPU
23. Pedestrian Tracker Demo
1 | pedestrian_tracker_demo -i ~ /obama .mp4 -m_det $MZOOPATH /person-detection-retail-0013/FP32/person-detection-retail-0013 .xml -m_reid $MZOOPATH /person-reidentification-retail-0031/FP32/person-reidentification-retail-0031 .xml |
24. Smart Classroom Demo
./smart_classroom_demo -m_act <path to the person/action detection retail model .xml file> -m_fd <path to the face detection retail model .xml file> -m_reid <path to the face reidentification retail model .xml file> -m_lm <path to the landmarks regression retail model .xml file> -fg <path to faces_gallery.json> -i <path to the input video>
25. Super Resolution Demo
./super_resolution_demo -i <path_to_image>/image.bmp -m <path_to_model>/model.xml
26. Using the Validation Application to Check Accuracy on a Dataset
1 2 3 4 5 6 7 8 9 | cd ~ git clone -b ssd https: //github .com /weiliu89/caffe .git cd caffe git branch cd .. wget http: //host .robots.ox.ac.uk /pascal/VOC/voc2007/VOCtest_06-Nov-2007 . tar tar -xvf VOCtest_06-Nov-2007. tar |
1 2 3 4 | sed -i -e "s/^\(INCLUDE_DIRS := \$(PYTHON_INCLUDE) \ /usr \ /local \ /include \)/\1 \ /usr \ /incl ude\ /hdf5 \ /serial \ // " Makefile.config sed -i -e "s/hdf5_hl hdf5/hdf5_serial_hl hdf5_serial/" Makefile |
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 【译】Visual Studio 中新的强大生产力特性
· 【设计模式】告别冗长if-else语句:使用策略模式优化代码结构
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
2017-12-28 openstack cloud init set password