% 公式设置
$$ % Math symbol commands \newcommand\dif{\mathop{}\!\mathrm{d}} % Symbol 'd' used in differentiation \newcommand\grad{\operatorname{grad}} ... $$

零蛋大

导航

一类 $\dif (ax+\frac{b}{x})$ 的不定积分

例题1:求不定积分: \(\displaystyle\int\frac{1}{1+x^4}\,\mathrm{d}x\)

\[\begin{align*} \int\frac{1}{1+x^4}\mathrm{d}x &=\frac{1}{2}\int\frac{x^2+1}{1+x^4}\mathrm{d}x-\frac{1}{2}\int\frac{x^2-1}{1+x^4}\mathrm{d}x\\ &=\frac{1}{2}\int\frac{1}{\left(x-\frac{1}{x}\right)^2+2}\mathrm{d}\left(x-\frac{1}{x}\right)-\frac{1}{2}\int\frac{1}{\left(x+\frac{1}{x}\right)^2-2}\mathrm{d}\left(x+\frac{1}{x}\right)\\ &=\frac{1}{2\sqrt{2}}\arctan\frac{x^2-1}{\sqrt{2}}+\frac{1}{4\sqrt{2}}\ln\left|\frac{x^2+\sqrt{2}x+1}{x^2-\sqrt{2}x+1}\right|+C \end{align*}\]

例题2:求不定积分: \(\displaystyle\int\sqrt{\tan x}\dif x\)

\[\begin{align*} \int\sqrt{\tan x}\dif x &\xlongequal{\sqrt{\tan x}=t}2\int\frac{t^2}{1+t^4}\dif t =\int\frac{1+t^2}{1+t^4}\dif t-\int\frac{1-t^2}{1+t^4}\dif t\\ &=\int\frac{1}{(t-\frac{1}{t})^2+2}\dif\left(t- \frac{1}{t}\right)-\int\frac{1}{(t+\frac{1}{t})^2- 2}\dif\left(t+\frac{1}{t}\right)\\ &=\frac{\sqrt 2}{2}\arctan\left(\frac{t^2-1}{\sqrt 2t}\right)+ \frac{\sqrt 2}{4}\ln\left|\frac{t^2+\sqrt 2t+1}{t^2-\sqrt 2t+1}\right| + c\\ &=\frac{\sqrt 2 }{2}\arctan\left(\frac{\tan x-1}{2\sqrt{\tan x}} \right) +\frac{\sqrt 2}{4}\ln\left|\frac{\tan x+\sqrt{2\tan x}+1}{\tan x-\sqrt{2\tan x}+1}\right| + c \end{align*}\]

例题3:求不定积分 \(\displaystyle\int\frac{1}{x^8+x^4+1}\dif x\)

\[\begin{align*} \int\frac{1}{x^8+x^4+1}\dif x&=\int\frac{1}{(x^8+2x^4+1)-x^4}\dif x\\ &=\int\frac{1}{(x^4+1)^2-x^4}\dif x\\ &=\int\frac{1}{\big[(x^4+1)-x^2\big]\big[(x^4+1)+x^4\big]}\dif x\\ &=\int\frac{1}{(x^2-x+1)(x^2+x+1)(x^4-x^2+1)}\dif x\\ &=\frac{1}{4}\int\frac{\dif x}{x^2-x+1}+\frac{1}{4}\int\frac{\dif x}{x^2+x+1}+\frac{1}{2}\int\frac{1-x^2}{x^4-x^2+1}\dif x\\ &=\frac{1}{4}\int\frac{\dif x}{\big(x-\frac{1}{2}\big)^2+\frac{3}{4}}+\frac{1}{4}\int\frac{\dif x}{\big(x+\frac{1}{2}\big)^2+\frac{3}{4}}+\frac{1}{2}\int\frac{\frac{1}{x^2}-1}{x^2+\frac{1}{x^2}-1}\dif x\\ &=\frac{1}{2\sqrt{3}}\arctan\frac{2x-1}{\sqrt{3}}+\frac{1}{2\sqrt{3}}\arctan\frac{2x+1}{\sqrt{3}}-\frac{1}{2}\int\frac{\big(x+\frac{1}{x}\big)^2}{\big(x+\frac{1}{x}\big)^2-2}\\ &=\frac{\arctan\frac{2x-1}{\sqrt{3}}+\arctan\frac{2x+1}{\sqrt{3}}}{2\sqrt{3}}-\frac{1}{4\sqrt{2}}\ln\left(\frac{x^2-\sqrt{2}x+1}{x^2+\sqrt{2}x+1}\right)+C \end{align*}\]

例题4:求不定积分:\(\displaystyle\int\ln\Big(x+\frac{1}{x}\Big)\dif x\).
:法I. 一方面,

\[\begin{align*} \int\Big(1-\frac{1}{x^2}\Big)\ln\Big(x+\frac{1}{x}\Big)\dif x &=\int\ln\Big(x+\frac{1}{x}\Big)\dif\Big(x+\frac{1}{x}\Big)\\ &\xlongequal{\text{分部积分}}\Big(x+\frac{1}{x}\Big)\ln\Big(x+\frac{1}{x}\Big)-\Big(x+\frac{1}{x}\Big)+C \end{align*}\]

另一方面,

\[\begin{align*} \int\Big(1+\frac{1}{x^2}\Big)\ln\Big(x+\frac{1}{x}\Big)\dif x &=\frac{1}{2}\int\Big(1+\frac{1}{x^2}\Big)\ln\Big(x+\frac{1}{x}\Big)^2\dif x\\ &=\frac{1}{2}\int\Big(1+\frac{1}{x^2}\Big)\ln\bigg(\Big(x-\frac{1}{x}\Big)^2+4\bigg)\dif x\\ &=\frac{1}{2}\int\ln\bigg(\Big(x-\frac{1}{x}\Big)^2+4\bigg)\dif\Big(x-\frac{1}{x}\Big)\\ &\xlongequal{x-\frac{1}{x}=u}\frac{1}{2}\int\ln(u^2+4)\dif u\\ &\xlongequal{\text{分部积分}}\frac{1}{2}u\ln(u^2+4)+2\arctan\frac{u}{2}-u+C\\ &\xlongequal{\text{带值}}\Big(x-\frac{1}{x}\Big)\ln\Big(x+\frac{1}{x}\Big)+2\arctan\frac{x^2-1}{2x}-\Big(x-\frac{1}{x}\Big)+C \end{align*}\]

所以

\[\int\ln\Big(x+\frac{1}{x}\Big)\dif x=x\ln\Big(x+\frac{1}{x}\Big)+\arctan\frac{x^2-1}{2x}-x+C \]

法II. 直接分部积分

\[\begin{align*} \int\ln\left(x+\frac{1}{x}\right){\rm d}x &=x\ln\left(x+\frac{1}{x}\right)-\int\left(1-\frac{2}{x^2+1}\right){\rm d}x\\ &=x\ln\left(x+\frac{1}{x}\right)-x+2\arctan x+C. \end{align*}\]

例题5:求不定积分:\(\displaystyle\int\frac{\dif x}{\sqrt{(x+x^{-1})^2-12}}\).
:一方面,

\[\begin{align*} \int\frac{1-\frac{1}{x^2}}{\sqrt{(x+x^{-1})^2-12}}\dif x &=\int\frac{1}{\sqrt{(x+x^{-1})^2-12}}\dif\Big(x+\frac{1}{x}\Big)\\ &\xlongequal{x+\frac{1}{x}=u}\int\frac{1}{\sqrt{u^2-12}}\dif u\\ &=\ln|u+\sqrt{u^2-12}|+C%\\&\xlongequal{\text{带值}}\cdots \end{align*}\]

另一方面,

\[\begin{align*} \int\frac{1+\frac{1}{x^2}}{\sqrt{(x+x^{-1})^2-12}}\dif x &=\int\frac{1}{\sqrt{(x-x^{-1})^2-8}}\dif\Big(x-\frac{1}{x}\Big)\\ &\xlongequal{x-\frac{1}{x}=v}\int\frac{1}{\sqrt{v^2-8}}\dif v\\ &=\ln|v+\sqrt{v^2-10}|+C%\\&\xlongequal{\text{带值}}\cdots \end{align*}\]

所以

\[\int\frac{\dif x}{\sqrt{(x+x^{-1})^2-12}}=\frac{1}{2}\big(\ln|u+\sqrt{u^2-12}|+\ln|v+\sqrt{v^2-8}|\big)+C \]

其中,\(u=x+\frac{1}{x},v=x-\frac{1}{x}\)

posted on 2021-03-11 08:56  零蛋大  阅读(57)  评论(0编辑  收藏  举报